Abstract:
A method and apparatus for use with a plant drive system that receives a reference command signal and generates a torque command to drive a plant, the method for estimating plant inertia and comprising the steps of providing a reference model that models the plant, the model receiving the reference command signal and generating a model output signal as a function thereof, identifying a plant output signal, mathematically combining the reference command signal and the plant output signal to generate a first error value, mathematically combining the plant output signal and the model output signal to generate a second error value, mathematically combining the first and second error values to generate an inertia estimate value and using the inertia estimate value to modify the torque command thereby providing a modified torque command signal to drive the plant.
Abstract:
A method and apparatus for use with a motor controller that receives a command velocity and that applies voltages to drive a motor at the command velocity, the apparatus comprising a dual inertia lost motion assembly including a motor and a load couplable to the motor, the lost motion assembly characterized by at least some lost motion between the motor and the load, the motor and load together characterized by a total assembly inertia, an acceleration error determiner for generating an acceleration error that is the difference between a derivative of the command velocity and a motor acceleration value and a low pass acceleration error filter filtering the acceleration error and having a gain set as a percentage of the total assembly inertia, the acceleration error filter providing the filtered signal to the controller, the controller using the filtered signal to adjust the applied voltages.
Abstract:
Motor drives and control methods are presented for sensorless motor speed control in which inverter output currents are sampled from the inverter output, and a frequency modulation value is determined based on the current feedback and either one or more voltage commands or one or more voltage feedback signals. A speed or frequency setpoint is adjusted at least partially according to the frequency modulation value to provide an adjusted frequency or speed setpoint value that is then used in controlling the inverter to provide stability control to mitigate hunting or motor stoppage.
Abstract:
Motor drives and control methods are presented for sensorless motor speed control in which inverter output currents are sampled from the inverter output and a frequency modulation value is determined based on the current feedback. A speed or frequency setpoint is adjusted at least partially according to the frequency modulation value to provide an adjusted frequency or speed setpoint value that is then used in controlling the inverter to provide stability control to mitigate hunting or motor stoppage.
Abstract:
Gear wheel for a clock mechanism, including a toothed gear provided with a homogeneous integral peripheral tooth system with at most 16 teeth in a first meshing level; a first meshing sector that is rotationally fixed with the toothed gear and meshes in a second meshing level, wherein the first meshing level is superposed on a first tooth of the toothed gear; a second meshing sector that is rotationally fixed with the toothed gear and meshes in a third meshing level, wherein the second meshing level is superposed on a second tooth of the toothed gear; a third meshing sector that is rotationally fixed with the toothed gear and meshes in a fourth meshing level, wherein the third meshing level is superposed on a third tooth of the toothed gear.
Abstract:
In a device for moving a plurality of pressure rollers relative to respective counter rollers in a printing machine, it is possible to provide a simple design of this device, wherein, in a non-energy mode, the pressure rollers are arranged in a non-contact position. For this purpose, the device includes a plurality of movably supported pressure roller carriers that each support one pressure roller, the pressure roller carriers being movable between a contact position and a non-contact position. In this arrangement, each of the pressure roller carriers is biased in the direction of the contact position via a biasing unit. Furthermore, at least one actuation element is provided, the actuation element connecting at least two pressure roller carriers to a shared actuation device.
Abstract:
The present disclosure describes rotary-style combination locks and associated methods of manufacture and use. In one embodiment, a lock includes a locking member movable between locked and unlocked configurations with respect to a housing and a dial having characters around the circumference that align with an indicator to enter the lock's combination. The lock can include combination discs having tabs oriented thereon that allow the lock to have a predefined combination including adjacent characters on the dial.
Abstract:
A light emitting device includes a substrate layer and a light conversion layer located on said substrate layer. The light conversion layer is a polycrystalline ceramic layer, and is positioned on the substrate layer by sintering.
Abstract:
The invention relates to a light emitting device comprising at least one light source and at least one ceramic spherical color converter material, which helps to ease the manufacture as well as to improve the luminescence properties of the light emitting device.
Abstract:
A light emitting system (1) comprising a radiation source (2) capable of emitting a first light of at least a first wavelength spectrum; a first fluorescent material (4) capable of absorbing at least partially the first light and emitting second light having a second wavelength spectrum; a second fluorescent material (8) capable of absorbing at least partially the first light and emitting a third light having a third wavelength spectrum; wherein one, the first (4) or the second fluorescent material (8) is a polycrystalline ceramic with a density of more than 97 percent of the density of a monocrystalline material and the respective other fluorescent material is a phosphor powder with a median particle size 100 nm