Abstract:
A digital audio conferencing system has a fixed base station that is in communication with a far end (R.E.) system over a communication network. The base station is associated with a wireless loudspeaker and one or more wireless microphones. The base station operates to receive F.E. audio signals to be played by the wireless loudspeaker, and it operates to remove acoustic echo picked up by the wireless microphones. A first clock controlling F.E. audio signal sampling at the base station, and a second clock controlling audio signal sampling and at a wireless microphone are synchronized to one master, reference clock that controls the operation of the base station. Acoustic echo included in an audio signal picked up by a wireless microphone is removed by AEC functionality running in the base station.
Abstract:
One or more audio conferencing systems are connected to a local network, and each conferencing system is comprised of a plurality of wireless microphones in communication with a plurality of antennas deployed in an array configuration. Each of the antennas comprising one of the audio conferencing systems is in direct communication with a base station and in indirect communication with a server which runs a centralized digital signal processing functionality. The digital signal processing functionality operates on audio information received from one or more far-end audio sources and from each of the one or more audio conferencing system.
Abstract:
One or more audio conferencing systems are connected to a local network, and each conferencing system is comprised of a plurality of wireless microphones in communication with a plurality of antennas deployed in an array configuration. Each of the antennas comprising one of the audio conferencing systems is in direct communication with a base station and in indirect communication with a server which runs a centralized digital signal processing functionality. The digital signal processing functionality operates on audio information received from one or more far-end audio sources and from each of the one or more audio conferencing system.
Abstract:
In a wide area communications network such as the Internet, a public server and an associated database store and make available to a private server personal information relating to an individuals emotional or some other mental or physical state. The private server includes functionality to interpret the personal information it receives or gathers from the public server in order to identify at least one reaction instruction which can be used by a multimedia communications device to convey to a user the state of an individual by generating a human perceivable reaction which can be playing multimedia content in combination with movement if the multimedia communications device is a robot.
Abstract:
A robot movement control device is connected to a communications network in a remote location relative to a robotic device that is also connected to the communications network. The robot movement control device is an electronic device with a video display for displaying a real-time video image sent to it by a camera associated with the robot. A robot movement control overlay is displayed in the field of the real-time video image at the robot control device and robot control commands are generated by selecting locations within the boundary of the movement control overlay which include speed and directional information. The control commands are sent by the robot control device over the network to the robot which uses the commands to adjust its speed and direction of movement.
Abstract:
In a wide area communications network such as the Internet, a public server and an associated database store and make available to a private server personal information relating to an individuals emotional or some other mental or physical state. The private server includes functionality to interpret the personal information it receives or gathers from the public server in order to identify at least one reaction instruction which can be used by a multimedia communications device to convey to a user the state of an individual by generating a human perceivable reaction which can be playing multimedia content in combination with movement if the multimedia communications device is a robot.
Abstract:
A remote control device able to connect to a communications network generates robot control messages are used for the remote control of a robot also able to be connected to the communications network. The remote control device creates a robot control file and an indirect reference to the robot control file which a user can select for inclusion in a robot control message. Once selected, the indirect reference to a robot control file causes the indirectly referenced robot control file to be included in a message generated by the remote control device. The remote control device establishes a communications link with the communications network, and sends the message, with the robot control file, to the robot also connected to the communications network. The robot receives the robot control message and performs at least one action according to the instruction included in the robot control message.