Abstract:
A strobe device is provided with a light-emitting unit rotatably coupled to a strobe body unit detachable from a bracket together with an imaging apparatus, a variable mechanism configured to allow a change in an angle of orientation of the light-emitting unit with respect to the strobe body unit, a driving unit configured to drive the variable mechanism, and a control section configured to control the driving unit. The control section has a control mode to restrain the light-emitting unit from moving to a region in which the imaging apparatus is located when it is detected that the strobe body unit is attached to the bracket. As a result, the strobe device whose the light-emitting unit does not bump against the imaging apparatus can be realized.
Abstract:
A light source device includes a plurality of light sources; a condensing optical member; a fluorescent unit that converts at least a portion of the light from the light sources and condensed by the optical member into light including converted light and light from the light sources; and a sensor that detects an anomaly in the fluorescent unit, such sensor disposed within a circular area circumscribed by the light sources.
Abstract:
Lighting system includes light source that includes at least one light-emitting device and emits first light (laser light); wavelength conversion member that converts part of the first light into second light having a different wavelength from that of the first light; an optical system (light guide member) where the first light enters and that applies the first light to wavelength conversion member; optical sensor that receives part of the second light as monitor light and outputs monitor signal corresponding to the intensity of monitor light; and output control circuit that controls light source and optical sensor. Output control circuit performs an optical system inspection of conditions of the optical system and wavelength conversion member and a light source inspection of a condition of light source in accordance with monitor signal, using a time division method.
Abstract:
Lighting system includes light source that includes a plurality of light-emitting devices and emits first light; wavelength conversion member that converts part of the first light into second light; an optical system that applies the first light to wavelength conversion member; optical sensor that output monitor signal corresponding to the intensity of the second light; and output control circuit that controls light source and optical sensor. Output control circuit performs a light source inspection of a condition of light source and an optical system inspection of conditions of the optical system and wavelength conversion member in accordance with monitor signal. In the light source inspection, the output control circuit inspects each of light-emitting devices in sequence, and after having inspected one of light-emitting devices, suspends the light source inspection and performs the optical system inspection before inspection of another one of the light emitting devices.
Abstract:
The present invention relates to a strobe device including: a strobe main body; a light emitter rotatably coupled to the strobe main body; a variable mechanism capable of changing an illumination direction angle of the light emitter; and a driver-that drives the variable mechanism. The driver includes: a detector that detects that abnormal force is applied to the variable mechanism and a detection responsive controller that controls the driver based on the abnormal force detected by the detector. This can achieve the strobe device that can prevent the light emitter from colliding with an obstacle and prevent the driver from being damaged.
Abstract:
Lighting system includes light source that includes at least one light-emitting device and emits first light (laser light); wavelength conversion member that converts part of the first light into second light having a different wavelength from that of the first light; an optical system (light guide member) where the first light enters and that applies the first light to wavelength conversion member; optical sensor that receives part of the second light as monitor light and outputs monitor signal corresponding to the intensity of monitor light; and output control circuit that controls light source and optical sensor. Output control circuit performs an optical system inspection of conditions of the optical system and wavelength conversion member and a light source inspection of a condition of light source in accordance with monitor signal, using a time division method.