Abstract:
In a power supply, a first output terminal and a second output terminal are electrically connected to each other, and a first common terminal and a second common terminal are electrically connected to each other. When a value of a consumption current of a motor is equal to or smaller than a value of a maximum output current of a second constant voltage circuit, the second constant voltage circuit keeps a second voltage at a steady voltage value. When the value of the consumption current of the motor is larger than the value of the maximum output current, the second constant voltage circuit control the second voltage to have a value smaller than a value of the first voltage, and a first constant voltage circuit supplies a differential current which corresponds to a difference between the consumption current of the motor and the maximum output current of the second constant voltage circuit.
Abstract:
A lighting device includes first to third output terminals, a power converter, a bypass switch, and a controller. A first light source is connected between the first and third output terminals. A second light source is connected between the second and third output terminals. The bypass switch is connected between the second and third output terminals. The controller switches the bypass switch between ON-state and OFF-state. The controller controls the power converter to adjust an output current. The controller includes a voltage meter for measuring a voltage corresponding to an output voltage of the power converter. The controller compares a measured voltage of the voltage meter with a first threshold voltage while keeping the bypass switch in OFF-state. The controller compares the measured voltage with a second threshold voltage while keeping the bypass switch in ON-state. The second threshold voltage is smaller than the first threshold voltage.
Abstract:
A lighting device includes an output adjustment circuit, a smoothing circuit and a control circuit. The smoothing circuit receives a binary rotation detection signal according to the rotation of a fan and smooths the rotation detection signal to produce a smoothed signal. The control circuit detects a rotation malfunction of the fan when the smoothed signal is greater than or equal to an upper limit threshold over first predetermined time or when the smoothed signal is smaller than or equal to a lower limit threshold over second predetermined time.
Abstract:
A control circuit is configured to compare an input voltage measured through an input voltage detection circuit with a first threshold which is lower than a rated voltage of an external DC power supply and with a second threshold which is lower than the first threshold. The control circuit is configured, when detecting that a duration time in which the input voltage is kept lower than the first threshold reaches a predetermined holding period, to stop operating a switching device. The control circuit is configured, after detecting that the input voltage is lower than the second threshold, to more shorten a maximum ON time than that during a normal operation or lengthen an OFF time of the switching device than a maximum OFF time during the normal operation.
Abstract:
The lighting device includes a control circuit performing dimming control of dimming a light source device according to a desired dimming level. In the dimming control, the control circuit sets a desired current value of amplitude control to a value corresponding to the desired dimming level, and set a desired duty cycle of pulse width modulation control to a predetermined value associated with a dimming subrange containing the desired dimming level, of multiple different dimming subranges of a total dimming range of the light source device. The predetermined value is a duty cycle allowing luminance of the light source device to be equal to upper limit luminance of the associated dimming subrange under a condition where the current value of the current of the light source device is a maximum value.
Abstract:
The lighting device lights an illumination load in which a first light source block and a second light source block are coupled in series. The lighting device includes a switch unit coupled in parallel with the second light source block. The switch unit includes a series circuit of a switching element and a resistor. The lighting device keeps the switching element off to set a state of the illumination load to a first state. The lighting device keeps the switching element on to set the state of the illumination load to a second state. The resistor has its resistance allowing a value of a voltage across the switch unit to be smaller than a value of a voltage across the second light source block which causes the second light source block to light while the switching element is on.