Abstract:
A visible light communication modulation circuit includes a modulation resistance circuit configured to change a current flowing through an LED light source by changing a resistance thereof, a measurement circuit configured to simultaneously measure a voltage applied to the LED light source and the current flowing through the LED light source at least twice until the current is stabilized, an calculation circuit configured to obtain an equivalent series resistance of the LED light source based on at least two sets of voltage values and current values and determine a target resistance of the modulation resistance circuit based on the equivalent series resistance and a predetermined modulation degree, and a conversion circuit configured to change the resistance of the modulation resistance circuit based on the target resistance.
Abstract:
A lighting device that supplies current to light-emitting units includes: a DC-to-DC converter; a switch unit connected to the light-emitting units; and a control circuit which controls the DC-to-DC converter and the switch unit. The DC-to-DC converter includes: an inductor through which current from the DC-to-DC converter is provided to the light-emitting units; and a first switch element connected in series with the inductor and which switches ON/OFF. The control circuit includes: a zero-crossing detector that detects that current flowing in the inductor is substantially zero due to the first switch element switching OFF, and outputs a zero-current detection signal; and a switch controller that selects one of the light-emitting units and controls the switch unit to cause the current from the DC-to-DC converter to be supplied to the selected light-emitting unit when the first switch element subsequently switches ON, each time the switch controller receives the zero-current detection signal.