Abstract:
The lighting device includes a controller for determining first, second, and third desired values of first, second, third drive currents to first, second, and third light sources, based on a correction coefficient for correcting chromaticity points of the first, second, and third light sources to first, second, and third chromaticity points. The first, second, and third light sources have first, second, and third ranges of individual differences in color. The first chromaticity point is an intersection of a straight line touching the first and second ranges and another straight line touching the first and third ranges. The second chromaticity point is an intersection of a straight line touching the second and first ranges and another straight line touching the second and third ranges. The third chromaticity point is an intersection of a straight line touching the third and first ranges and another straight line touching the third and second ranges.
Abstract:
When supplying an LED light source with a first output voltage that is equal to or higher than a threshold voltage, an LED driver causes a DC power supply to output a first DC voltage and causes a switching regulator to supply the LED light source with the first output voltage. When supplying the LED light source with a second output voltage that is below the threshold voltage, the LED driver causes the DC power supply to output a second DC voltage lower than the first DC voltage and causes the dropper regulator to supply the LED light source with the second output voltage.
Abstract:
A solid light source lighting device includes: a step-down chopper circuit including a switching element and outputting a DC power by turning on and off the switching element; a capacitor connected in parallel to a solid light source connected across output terminals of the step-down chopper circuit; and a control circuit determining a control value for a switching operation of the switching element based on a dimming signal for indicating a dimming ratio of the solid light source, and performing switching control of the switching element based on the control value. When performing switching control of the switching element so that the dimming ratio becomes high based on the dimming signal indicating a first dimming ratio, the control circuit performs the switching control of the switching element based on the control value that becomes a second dimming ratio higher than the first dimming ratio for a prescribed time period.
Abstract:
A component-mounting device includes a base, a board positioner which positions a board, a feeder carriage which is attachable to and detachable from the base, a part feeder which supplies a component, a mounting head which mounts the component on the board positioned by the board positioner, a nozzle replacement table which holds a replacement nozzle attached to or detached from the mounting head, a replacement table holder which holds the nozzle replacement table at a predetermined holding position within a movable range of the mounting head, and a placing table on which the nozzle replacement table is placed before the replacement table holder holds the nozzle replacement table. The component-mounting device delivers the nozzle replacement table between the replacement table holder and the placing table in a state where the feeder carriage is connected to the base.
Abstract:
A recognition mark which is formed on a tape retaining cover which retains a carrier tape, which holds components in pockets, in relation to a sprocket with which the tape feeder is provided, and the component or the pocket which is positioned at a suction position through an opening which is formed in the tape retaining cover are recognized. Based on recognition results, tape feed positional correction for positioning the suction target component at the suction position is performed such that the component, which is adjacent on an upstream side in a tape feed direction to the component which is positioned at the suction position, is not exposed by greater than or equal to a predetermined amount from the opening.
Abstract:
The lighting device includes a control unit configured to set desired values of drive currents of solid state light sources with different light emission colors. The control unit has a normal mode and a correction mode. The normal mode is a mode of setting the desired values to normal desired values corresponding to instruction values representing a desired color of colors. The correction mode is a mode of setting the desired values to corrected desired values corresponding to corrected instruction values obtained by correcting the instruction values.
Abstract:
A lighting device includes an electricity storage electrically connected in parallel with a solid light source, a switching circuit that produces a current to supply the current to the electricity storage, and a control circuit that controls, according to a dimming level, burst dimming by controlling the switching circuit so that the solid light source is lit intermittently. When the dimming level is a threshold level or more, the control circuit sets an electricity storage capacity of the electricity storage to a first capacity, and sets a frequency by the burst dimming to a first frequency. When the dimming level is below the threshold level, the control circuit sets the electricity storage capacity to a second capacity smaller than the first capacity, and sets the frequency by the burst dimming to a second frequency higher than the first frequency.
Abstract:
A lighting device includes at least first and second lighting circuits configured to receive electric power from a single common DC power supply. First lighting circuit includes a first output capacitor connected between output ends thereof, and a first pre-charge circuit configured to keep a voltage across first output capacitor at a first voltage for first lighting circuit, while a first light source is in OFF state. Second lighting circuit includes a second output capacitor connected between output ends thereof; and a second pre-charge circuit configured to keep a voltage across second output capacitor at a second voltage for second lighting circuit, while a second light source is in OFF state. First and second voltages are set such that a difference between a forward voltage of first light source and the first voltage agrees with a difference between a forward voltage of second light source and the second voltage.