摘要:
There are provided a wear resistant austenitic steel having superior machinability and toughness in weld heat affected zones and a method for producing the austenitic steel. The austenitic steel includes, by weight %, manganese (Mn): 15% to 25%, carbon (C): 0.8% to 1.8%, copper (Cu) satisfying 0.7C-0.56(%)≦Cu≦5%, and the balance of iron (Fe) and inevitable impurities, wherein the weld heat affected zones have a Charpy impact value of 100 J or greater at −40° C. The toughness of the austenitic steel is not decreased in weld heat affected zones because the formation of carbides during welding is suppressed, and the machinability of the austenitic steel is improved so that a cutting process may be easily performed on the austenitic steel. The corrosion resistance of the austenitic steel is improved so that the austenitic steel may be used for an extended period of time in corrosive environments.
摘要:
There are provided a wear resistant austenitic steel having superior machinability and toughness in weld heat affected zones and a method for producing the austenitic steel. The austenitic steel includes, by weight %, manganese (Mn): 15% to 25%, carbon (C): 0.8% to 1.8%, copper (Cu) satisfying 0.7C-0.56(%)≦Cu≦5%, and the balance of iron (Fe) and inevitable impurities, wherein the weld heat affected zones have a Charpy impact value of 100 J or greater at −40° C. The toughness of the austenitic steel is not decreased in weld heat affected zones because the formation of carbides during welding is suppressed, and the machinability of the austenitic steel is improved so that a cutting process may be easily performed on the austenitic steel. The corrosion resistance of the austenitic steel is improved so that the austenitic steel may be used for an extended period of time in corrosive environments.
摘要:
Provided are an austenitic steel having excellent machinability and ultra-low temperature toughness in a weld heat-affected zone including 15 wt % to 35 wt % of manganese (Mn), carbon (C) satisfying 23.6C+Mn≥28 and 33.5C−Mn≤23, 5 wt % or less (excluding 0 wt %) of copper (Cu), chromium (Cr) satisfying 28.5C+4.4Cr≤57 (excluding 0 wt %), and iron (Fe) as well as other unavoidable impurities as a remainder, wherein a Charpy impact value of a weld heat-affected zone at −196° C. is 41 J or more, and a method of manufacturing the steel.According to the present invention, a low-cost ultra-low temperature steel may be obtained, a stable austenite phase may be formed at low temperature, carbide formation may be effectively suppressed, and a structural steel having excellent machinability and ultra-low temperature toughness in a weld heat-affected zone may be provided.
摘要:
A high-manganese wear-resistant steel having excellent weldability comprises 5 to 15 wt % of Mn, 16≤33.5C+Mn≤30 of C, 0.05 to 1.0 wt % of Si, and a balance of Fe and other inevitable impurities. The microstructure thereof includes martensite as a major component, and 5% to 40% of residual austenite by area fraction.
摘要:
Provided according to one embodiment of the present invention are a non-magnetic steel material and a method for manufacturing the same. The steel material comprises 15-27 wt % of manganese, 0.1-1.1 wt % of carbon, 0.05-0.50 wt % of silicon, 0.03 wt % or less (0% exclusive) of phosphorus, 0.01 wt % or less (0% exclusive) of sulfur, 0.050 wt % or less (0% exclusive) of aluminum, 5 wt % or less (0% inclusive) of chromium, 0.01 wt % or less (0% inclusive) of boron, 0.1 wt % or less (0% exclusive) of nitrogen, and a balance amount of Fe and inevitable impurities, has an index of sensitivity of 3.4 or less, the index of sensitivity being represented by the following relational expression (1): [Relational expression 1]—0.451+34.131*P+111.152*Al−799.483*B+0.526*Cr≤3.4 (wherein [P], [Al], [B] and [Cr] each mean a wt % of corresponding elements), and contains a microstructure with austenite at an area fraction of 95% or greater therein.
摘要:
Provided according to one embodiment of the present invention are a non-magnetic steel material and a method for manufacturing the same. The steel material comprises 15-27 wt % of manganese, 0.1-1.1 wt % of carbon, 0.05-0.50 wt % of silicon, 0.03 wt % or less (0% exclusive) of phosphorus, 0.01 wt % or less (0% exclusive) of sulfur, 0.050 wt % or less (0% exclusive) of aluminum, 5 wt % or less (0% inclusive) of chromium, 0.01 wt % or less (0% inclusive) of boron, 0.1 wt % or less (0% exclusive) of nitrogen, and a balance amount of Fe and inevitable impurities, has an index of sensitivity of 3.4 or less, the index of sensitivity being represented by the following relational expression (1): [Relational expression 1]−0.451+34.131*P+111.152*Al−799.483*B+0.526*Cr≤3.4 (wherein [P], [Al], [B] and [Cr] each mean a wt % of corresponding elements), and contains a microstructure with austenite at an area fraction of 95% or greater therein.
摘要:
The present invention relates to a high strength austenitic-based steel with remarkable toughness of a welding heat-affected zone and a preparation method therefor. One embodiment of the present invention provides: a high strength austenitic-based steel with remarkable toughness of a welding heat-affected zone, comprising 0.8-1.5 wt % of C, 15-22 wt % of Mn, 5 wt % or less of Cr (except 0), and the balance of Fe and other inevitable impurities, and further comprising at least one of the following (a) and (b), wherein the microstructure of a welding heat-affected zone comprises 90% or more of austenite by volume fraction; and a preparation method therefor. (a) Mo: 0.1-1% and B: 0.001-0.02% (b) Ti: 0.01-0.3% and N: 0.003-0.1%.
摘要:
Provided are an austenitic steel having excellent machinability and ultra-low temperature toughness in a weld heat-affected zone including 15 wt % to 35 wt % of manganese (Mn), carbon (C) satisfying 23.6C+Mn≧28 and 33.5C−Mn≦23, 5 wt % or less (excluding 0 wt %) of copper (Cu), chromium (Cr) satisfying 28.5C+4.4Cr≦57 (excluding 0 wt %), and iron (Fe) as well as other unavoidable impurities as a remainder, wherein a Charpy impact value of a weld heat-affected zone at −196° C. is 41 J or more, and a method of manufacturing the steel.According to the present invention, a low-cost ultra-low temperature steel may be obtained, a stable austenite phase may be formed at low temperature, carbide formation may be effectively suppressed, and a structural steel having excellent machinability and ultra-low temperature toughness in a weld heat-affected zone may be provided.
摘要:
There are provided a wear resistant austenitic steel having superior machinability and toughness in weld heat affected zones and a method for producing the austenitic steel. The austenitic steel includes, by weight %, manganese (Mn): 15% to 25%, carbon (C): 0.8% to 1.8%, copper (Cu) satisfying 0.7C-0.56(%)≦Cu≦5%, and the balance of iron (Fe) and inevitable impurities, wherein the weld heat affected zones have a Charpy impact value of 100 J or greater at −40° C. The toughness of the austenitic steel is not decreased in weld heat affected zones because the formation of carbides during welding is suppressed, and the machinability of the austenitic steel is improved so that a cutting process may be easily performed on the austenitic steel. The corrosion resistance of the austenitic steel is improved so that the austenitic steel may be used for an extended period of time in corrosive environments.