摘要:
The invention refers to a light emitting device including a semiconductor chip having a main radiation surface, which emits UV light in operation, a phosphor, which is arranged in the radiation beam of the UV light, absorbs partially the UV light, wherein the phosphor converts the UV light into visible light so that the device emits mixed light comprising the UV light as well as visible light.
摘要:
A method of producing an optoelectronic element with a light emitting component, includes arranging a sacrificial layer at least above a part of a light emitting side of the component, forming at least in a part of an outer surface of the sacrificial layer an inverted optic structure, covering the outer surface of the sacrificial layer by a light transparent layer, transferring the inverted optic structure to an inner side of the transparent layer, and removing the sacrificial layer and forming a gap between the component and the light transparent layer, wherein the light transparent layer includes at the inner side the optic structure.
摘要:
An optoelectronic component and a method for producing an optoelectronic component are disclosed. In an embodiment a method includes attaching a plurality of optoelectronic semiconductor chips on predetermined locations of an intermediate film, providing a cavity film with a plurality of separated openings, attaching the cavity film to the intermediate film such that each optoelectronic semiconductor chip is associated with a respective opening, wherein the cavity film is thicker than the optoelectronic semiconductor chips such that the cavity film exceeds the optoelectronic semiconductor chips in a direction away from the intermediate film, filling a casting material in each of the openings such that the optoelectronic semiconductor chips are casted with the casting material and removing the intermediate film.
摘要:
A light apparatus includes a first carrier with an optoelectronic component for generating electromagnetic radiation, a second carrier with at least one electronic component for controlling the optoelectronic component, and a thermally insulating layer arranged between, and attached to, the first and second carriers.
摘要:
A light apparatus is disclosed. Embodiments of the light apparatus includes a first carrier with at least one electronic component for controlling an optoelectronic component, a second carrier with the optoelectronic component for generating electromagnetic radiation and a thermally insulating layer arranged between the first and second carriers, wherein the first and second carriers are attached to the insulating layer.
摘要:
In an embodiment, a method for producing optoelectronic semiconductor devices includes applying a temporal spacer to protect a light-exit face of an optoelectronic semiconductor chip by applying a photoresist onto a first carrier, subsequently developing the photoresist in places thereby forming the temporal spacer and subsequently mounting the optoelectronic semiconductor chip onto a side of the temporal spacer facing away from the first carrier, forming a reflector in a lateral direction directly around the optoelectronic semiconductor chip and around the temporal spacer, subsequently removing the temporal spacer so that the reflector extends beyond the light-exit face and applying an optical element onto the reflector so that a gap exists between the light-exit face and a light-entrance face of the optical element.
摘要:
An electronic device includes a carrier and a semiconductor chip, wherein the carrier includes a first dielectric layer and a second dielectric layer, a thermal conductivity of the first dielectric layer exceeds a thermal conductivity of the second dielectric layer, the second dielectric layer is arranged on the first dielectric layer and partially covers the first dielectric layer, the semiconductor chip is arranged on the carrier in a mounting area in which the first dielectric layer is not covered by the second dielectric layer, and the carrier includes a solder terminal for electrical contacting arranged on the second dielectric layer.
摘要:
A method of producing a multiplicity of surface-mountable carrier devices includes: A) providing a carrier plate having a first main face and a second main face located opposite the first main face, B) applying an electrically conductive layer to the first main face, C) applying a solder resist mask to a side of the electrically conductive layer remote from the carrier plate, wherein a multiplicity of adjoining regions are formed on the electrically conductive layer by the solder resist mask, D) applying a solder material to the solder resist mask and the electrically conductive layer, wherein the solder resist mask and the electrically conductive layer are at least partially covered by the solder material, and E) singulating the carrier plate and the electrically conductive layer along and through the solder resist mask and the solder material, wherein the solder material remains at least partially on the solder resist mask.
摘要:
A method of producing a multiplicity of surface-mountable carrier devices includes: A) providing a carrier plate having a first main face and a second main face located opposite the first main face, B) applying an electrically conductive layer to the first main face, C) applying a solder resist mask to a side of the electrically conductive layer remote from the carrier plate, wherein a multiplicity of adjoining regions are formed on the electrically conductive layer by the solder resist mask, D) applying a solder material to the solder resist mask and the electrically conductive layer, wherein the solder resist mask and the electrically conductive layer are at least partially covered by the solder material, and E) singulating the carrier plate and the electrically conductive layer along and through the solder resist mask and the solder material, wherein the solder material remains at least partially on the solder resist mask.
摘要:
In an embodiment, a method for producing optoelectronic semiconductor devices includes applying a temporal spacer to protect a light-exit face of an optoelectronic semiconductor chip by applying a photoresist onto a first carrier, subsequently developing the photoresist in places thereby forming the temporal spacer and subsequently mounting the optoelectronic semiconductor chip onto a side of the temporal spacer facing away from the first carrier, forming a reflector in a lateral direction directly around the optoelectronic semiconductor chip and around the temporal spacer, subsequently removing the temporal spacer so that the reflector extends beyond the light-exit face and applying an optical element onto the reflector so that a gap exists between the light-exit face and a light-entrance face of the optical element.