Abstract:
An apparatus and a method are described, by which at least one bearer containing data for a user equipment is received and a connection to the user equipment is provided via a radio access network. Furthermore, transmission of the data for the user equipment is scheduled based on a scheduling parameter associated to the bearer. Moreover, parameter change information associated to the bearer is detected, the parameter change information indicating how the scheduling parameter is to be changed, and the parameter change information for the bearer is stored in the memory.
Abstract:
An apparatus and a method are described, by which at least one bearer containing data for a user equipment is received and a connection to the user equipment is provided via a radio access network. Furthermore, transmission of the data for the user equipment is scheduled based on a scheduling parameter associated to the bearer. Moreover, parameter change information associated to the bearer is detected, the parameter change information indicating how the scheduling parameter is to be changed, and the parameter change information for the bearer is stored in the memory.
Abstract:
Systems, methods, apparatuses, and computer program products for a connection identification scheme are provided. One method includes determining, for example by an information receiver, a unique connection identity for an off-band connection with an information provider. The unique connection identity may be based on information related to a user plane connection with the information provider. The method may further include storing the unique connection identity, receiving radio access network information and synchronization information from the information provider, and synchronizing at least part of the radio access information with at least part of information sent in the user plane connection, using the synchronization information.
Abstract:
Systems and techniques for transport control protocol proxy mangement during handover of a user device from one base station to another. One or embodiments of the invention provide mechanisms to create a transport control protocol (TCP) proxy during establishment of a new data bearer establishment at an eNodeB, wherein the TCP proxy is integrated with a packet data convergence protocol (PDCP) buffer of the new bearer. The TCP proxy is configured so as to manage delivery of pre-fetched data to a user device so as to prevent TCP connection collapse during handover of the user device from a source eNodeB to a target eNodeB.
Abstract:
A method for provisioning a self-learning closed loop service is provided. The method includes receiving a representation of the self-learning closed loop service, the representation including a specification of one or more automation subservices, identifying, for each automation subservice of the representation, one or more utility measurement subservices that are compatible with the respective automation subservice and deploying an instance of the self-learning closed loop service based on the identification, wherein the instance includes a pairing of each automation subservice of the self-learning closed loop service with one or more compatible utility measurement subservices.
Abstract:
Communication systems may benefit from more accurate information regarding the passage of data through a network. For example, certain wireless communication systems may benefit from throughput guidance based on user plane insight and optional radio channel information. A method can include monitoring the bandwidth available on at least one of a per data bearer, per application or per transmission control protocol flow basis. The method can also include providing throughput guidance to an entity configured to attempt at least one of transmission control protocol or content level optimization. The throughput guidance can be configured to assist the entity in attempting the at least one of the transmission control protocol or content level optimization.
Abstract:
Communication systems may benefit from more accurate information regarding the passage of data through a network. For example, certain wireless communication systems may benefit from throughput guidance based on user plane insight and optional radio channel information. A method can include monitoring the bandwidth available on at least one of a per data bearer, per application or per transmission control protocol flow basis. The method can also include providing throughput guidance to an entity configured to attempt at least one of transmission control protocol or content level optimization. The throughput guidance can be configured to assist the entity in attempting the at least one of the transmission control protocol or content level optimization.
Abstract:
Various communication systems may benefit from buffer management. For example, systems employing a packet data convergence protocol may be enhanced with network-side buffer management that is configured to manipulate transmission control protocol packet senders. A method can include receiving a plurality of packets at a buffer of a buffer manager. The method can also include manipulating, by the buffer manager, pacing of transmission control protocol senders of the packets. The method can further optionally include fair queuing the packets and/or performing flow incubation on the packets.
Abstract:
A method comprises detecting (402) QUIC packets transmitted (401, 406) between network elements (UE, content server) of a communication system. Based on a detected QUIC packet, the method comprises obtaining (403), at a first measurement point and at a second measurement point, user plane customer experience measurement information and optionally context information. The method comprises providing (404), to the first measurement point, user plane customer experience measurement information and optionally context information, obtained at the second measurement point. The method comprises correlating (405) user plane customer experience measurement information obtained at the first measurement point, with user plane customer experience measurement information received from the second measurement point, by using context information obtained at the first measurement point and context information received at the first measurement point.
Abstract:
A method comprises analysing (110), in a network node, data flows related to a terminal device of a communication system, in order to detect data flows having at least one predefined characteristic. The network node selects (111) the data flows having the at least one predefined characteristic, as significant data flows on which customer experience CE measurements are to be performed.