Performing various operations at the granularity of a consistency group within a cross-site storage solution

    公开(公告)号:US11934670B2

    公开(公告)日:2024-03-19

    申请号:US17219759

    申请日:2021-03-31

    Applicant: NetApp, Inc.

    CPC classification number: G06F3/0631 G06F3/0604 G06F3/067

    Abstract: Systems and methods are described for efficiently performing various operations at the granularity of a consistency group (CG) within a cross-site storage solution. An example of one of the various operations includes an independent and parallel resynchronization approach that independently brings individual volumes of a CG to a steady state of in-synchronization (InSync), thereby contributing to scalability of CGs by supporting CGs having a large number of member volumes without requiring a change to the resynchronization process. Another example includes preserving dependent write-order consistency when a remote mirror copy goes out-of-synchronization (OOS) for any reason by driving all member volumes OOS responsive to any member volume becoming OOS. Yet another example includes independent creation of snapshots by member volumes to support efficient and on-demand creation by an application of a common snapshots of all or a subset of peered member volumes of a CG with which the application is associated.

    PERFORMING VARIOUS OPERATIONS AT THE GRANULARITY OF A CONSISTENCY GROUP WITHIN A CROSS-SITE STORAGE SOLUTION

    公开(公告)号:US20230289076A1

    公开(公告)日:2023-09-14

    申请号:US18320788

    申请日:2023-05-19

    Applicant: NetApp, Inc.

    CPC classification number: G06F3/0631 G06F3/0604 G06F3/067

    Abstract: Systems and methods are described for efficiently performing various operations at the granularity of a consistency group (CG) within a cross-site storage solution. An example of one of the various operations includes an independent and parallel resynchronization approach that independently brings individual volumes of a CG to a steady state of in-synchronization (InSync), thereby contributing to scalability of CGs by supporting CGs having a large number of member volumes without requiring a change to the resynchronization process. Another example includes preserving dependent write-order consistency when a remote mirror copy goes out-of-synchronization (OOS) for any reason by driving all member volumes OOS responsive to any member volume becoming OOS. Yet another example includes independent creation of snapshots by member volumes to support efficient and on-demand creation by an application of a common snapshots of all or a subset of peered member volumes of a CG with which the application is associated.

    METHODS AND SYSTEMS FOR A NON-DISRUPTIVE PLANNED FAILOVER FROM A PRIMARY COPY OF DATA AT A PRIMARY STORAGE SYSTEM TO A MIRROR COPY OF THE DATA AT A CROSS-SITE SECONDARY STORAGE SYSTEM

    公开(公告)号:US20230119175A1

    公开(公告)日:2023-04-20

    申请号:US18066775

    申请日:2022-12-15

    Applicant: NetApp, Inc.

    Abstract: Systems and methods are described for a non-disruptive planned failover from a primary copy of data at a primary storage system to a mirror copy of the data at a cross-site secondary storage system. According to an example, a planned failover feature of a multi-site distributed storage system provides an order of operations such that a primary copy of a first data center continues to serve I/O operations until a mirror copy of a second data center is ready. This planned failover feature improves functionality and efficiency of the distributed storage system by providing non-disruptiveness during planned failover - even if various failures occur. The planned failover feature also includes a persistent fence to avoid serving I/O operations during a timing window when both primary data storage and secondary data storage are attempting to have a master role to serve I/O operations and this avoids a split-brain situation.

    PERFORMING VARIOUS OPERATIONS AT THE GRANULARITY OF A CONSISTENCY GROUP WITHIN A CROSS-SITE STORAGE SOLUTION

    公开(公告)号:US20220317897A1

    公开(公告)日:2022-10-06

    申请号:US17219759

    申请日:2021-03-31

    Applicant: NetApp, Inc.

    Abstract: Systems and methods are described for efficiently performing various operations at the granularity of a consistency group (CG) within a cross-site storage solution. An example of one of the various operations includes an independent and parallel resynchronization approach that independently brings individual volumes of a CG to a steady state of in-synchronization (InSync), thereby contributing to scalability of CGs by supporting CGs having a large number of member volumes without requiring a change to the resynchronization process. Another example includes preserving dependent write-order consistency when a remote mirror copy goes out-of-synchronization (OOS) for any reason by driving all member volumes OOS responsive to any member volume becoming OOS. Yet another example includes independent creation of snapshots by member volumes to support efficient and on-demand creation by an application of a common snapshots of all or a subset of peered member volumes of a CG with which the application is associated.

    METHODS AND SYSTEMS FOR A NON-DISRUPTIVE PLANNED FAILOVER FROM A PRIMARY COPY OF DATA AT A PRIMARY STORAGE SYSTEM TO A MIRROR COPY OF THE DATA AT A CROSS-SITE SECONDARY STORAGE SYSTEM

    公开(公告)号:US20220318107A1

    公开(公告)日:2022-10-06

    申请号:US17219812

    申请日:2021-03-31

    Applicant: NetApp, Inc.

    Abstract: Systems and methods are described for a non-disruptive planned failover from a primary copy of data at a primary storage system to a mirror copy of the data at a cross-site secondary storage system. According to an example, a planned failover feature of a multi-site distributed storage system provides an order of operations such that a primary copy of a first data center continues to serve I/O operations until a mirror copy of a second data center is ready. This planned failover feature improves functionality and efficiency of the distributed storage system by providing non-disruptiveness during planned failover—even if various failures occur. The planned failover feature also includes a persistent fence to avoid serving I/O operations during a timing window when both primary data storage and secondary data storage are attempting to have a master role to serve I/O operations and this avoids a split-brain situation.

Patent Agency Ranking