Abstract:
A precast segment suitable for block-stacking concept is disclosed. The precast segment includes a first surface, an opposite second surface, plural through holes, and plural male-female connecting sets. The through holes extend from the first surface and toward the second surface to communicate between the first surface and the second surface. Each male-female connecting set includes a shear key and a joint hole, wherein the shear key protrudes from one of the first surface and the second surface to serve as a male connecting unit, and the joint hole is formed in the other of the first surface and the second surface to serve as a female connecting unit. Accordingly, the precast segments can be block-stacked by mortise-and-tenon joints to construct a bridge pier system. Compared to the conventional construction methodology, the present invention can enhance the efficiency of segment fabrication and avoid high prestress force.
Abstract:
An annular reinforcing structure for the reinforcement of a supporting structure of a construction is provided. The annular reinforcing structure includes an outer frame body, an inner frame body and an elastic body. The inner frame body is connected to the outer frame body and positioned therein. The inner frame body and the outer frame body together define an annular space. The elastic body is accommodated in the annual space between the inner frame body and the outer frame body.
Abstract:
A light-weight temporary bridge system includes a weight balance structure-module, constructed at a first abutment; a bridge tower structure-module, including a bottom part fixed to the weight balance structure-module and a top part coupled to the weight balance structure-module via at least one first cable; and a crossing structure-module constructed between the first abutment and a second abutment, coupled to the weight balance structure-module and coupled to the top part of the bridge tower structure-module via at least one second cable.
Abstract:
The present invention relates to a method for measuring cracks remotely and the device thereof. First, multiple laser spots with known a shape are projected onto a remote wall and beside a crack. Then, by using geometric calculations, the relative coordinates of the laser spots on the wall and the real distance can be given and used as the reference length of the crack. Next, a camera is used for taking a picture of the remote crack along with the laser spots; the image identification technology is used for calculating the relevant parameters of the crack. Thereby, to acquire the parameters of the crack, a user needs not to be present at the site for measuring at a short distance or placing a reference object, and thus providing safety and convenience.