Applied artificial intelligence technology for conversational inferencing

    公开(公告)号:US10755046B1

    公开(公告)日:2020-08-25

    申请号:US16277000

    申请日:2019-02-15

    摘要: Disclosed herein is an NLP system that is able to extract meaning from a natural language message using improved parsing techniques. Such an NLP system can be used in concert with an NLG system to interactively interpret messages and generate response messages in an interactive conversational stream. The parsing can include (1) named entity recognition that contextualizes the meanings of words in a message with reference to a knowledge base of named entities understood by the NLP and NLG systems, (2) syntactically parsing the message to determine a grammatical hierarchy for the named entities within the message, (3) reduction of recognized named entities into aggregations of named entities using the determined grammatical hierarchy and reduction rules to further clarify the message's meaning, and (4) mapping the reduced aggregation of named entities to an intent or meaning, wherein this intent/meaning can be used as control instructions for an NLG process.

    Applied artificial intelligence technology for using natural language processing to train a natural language generation system

    公开(公告)号:US11042713B1

    公开(公告)日:2021-06-22

    申请号:US16444748

    申请日:2019-06-18

    摘要: Disclosed herein is computer technology that applies natural language processing (NLP) techniques to training data to generate information used to train a natural language generation (NLG) system to produce output that stylistically resembles the training data. In this fashion, the NLG system can be readily trained with training data supplied by a user so that the NLG system is adapted to produce output that stylistically resembles such training data. In an example, an NLP system detects a plurality of linguistic features in the training data. These detected linguistic features are then aggregated into a specification data structure that is arranged for training the NLG system to produce natural language output that stylistically resembles the training data. Parameters in the specification data structure can be linked to objects in an ontology used by the NLG system to facilitate the training of the NLG system based on the detected linguistic features.

    Applied artificial intelligence technology for conversational inferencing using named entity reduction

    公开(公告)号:US11030408B1

    公开(公告)日:2021-06-08

    申请号:US16277006

    申请日:2019-02-15

    摘要: Disclosed herein is an NLP system that is able to extract meaning from a natural language message using improved parsing techniques. Such an NLP system can be used in concert with an NLG system to interactively interpret messages and generate response messages in an interactive conversational stream. The parsing can include (1) named entity recognition that contextualizes the meanings of words in a message with reference to a knowledge base of named entities understood by the NLP and NLG systems, (2) syntactically parsing the message to determine a grammatical hierarchy for the named entities within the message, (3) reduction of recognized named entities into aggregations of named entities using the determined grammatical hierarchy and reduction rules to further clarify the message's meaning, and (4) mapping the reduced aggregation of named entities to an intent or meaning, wherein this intent/meaning can be used as control instructions for an NLG process.