Abstract:
A method of backlight control for a display panel is provided. The display panel is configured to display with a variable refresh rate in a plurality of frame periods each having a fixed period and a variable period. The method includes steps of: generating a first backlight control signal in the fixed period of a frame period; determining whether a liquid crystal (LC) transition time corresponding to the frame period ends before an end time of the variable period of the frame period; generating a second backlight control signal in the variable period of the frame period when the LC transition time ends before the end time of the variable period of the frame period; and generating a compensation backlight control signal in a next frame period according to a backlight duty cycle of the frame period.
Abstract:
A synchronous backlight device and an operation method thereof are provided. The synchronous backlight device includes a pulse width modulation (PWM) control circuit and a backlight driving circuit. The PWM control circuit receives the video sync information from a video processing circuit and generates a PWM control signal. Wherein, the video sync information defines a plurality of video frame periods, the PWM control circuit at least divides each of the video frame periods into a first period and a second period, the lengths of the first periods of the video frame periods are equal to one another. The frequency of the PWM control signal in the first periods is different from the frequency of the PWM control signal in the second periods. The backlight driving circuit drives the backlight source of a display panel in accordance with the PWM control signal.
Abstract:
A circuit arrangement for controlling a backlight source and an operation method are provided. The circuit arrangement includes a generator. The generator receives a sync signal and generates a pulse width modulation signal synchronous with the sync signal to control the backlight source. The sync signal indicates a frequency of a video including a series of image frames. The sync signal includes a sync period corresponding to a frame of the video. The pulse width modulation signal includes a first waveform pattern in a first sub-period of the sync period and a second waveform pattern in a second sub-period of the sync period. Each of the first waveform pattern and the second waveform pattern includes at least one active pulse. The first waveform pattern is substantially identical to the second waveform pattern.
Abstract:
A synchronous backlight device and an operation method thereof are provided. The synchronous backlight device includes a pulse width modulation (PWM) control circuit and a backlight driving circuit. The PWM control circuit receives the video sync information from a video processing circuit and generates a PWM control signal. Wherein, the video sync information defines a plurality of video frame periods, the PWM control circuit at least divides each of the video frame periods into a first period and a second period, the lengths of the first periods of the video frame periods are equal to one another. The frequency of the PWM control signal in the first periods is different from the frequency of the PWM control signal in the second periods. The backlight driving circuit drives the backlight source of a display panel in accordance with the PWM control signal.
Abstract:
An interface converter and an operation method of interface converter is provided. The interface converter includes a first media stream receiver, a second media stream transceiver, and a controller. The first media stream receiver is configured to fetch a first media stream for matching a first media stream protocol, wherein the first media stream comprises a link symbol clock and a first audio data with an audio parameter, the first media stream receiver further comprises a buffer having a write indicator and a read indicator for buffering sampled audio data from the first audio data. The second media stream transceiver is coupled to the first media stream receiver, and configured to receive the sampled audio data and a adjusted audio clock for generating a second media stream for matching a second media stream protocol. The controller is coupled to the first media stream receiver, configured to calculate an adjusted audio parameter according to the audio parameter, the write indicator and the read indicator, and generates the adjusted audio clock according to the link symbol clock and the adjusted audio parameter.
Abstract:
An LED driving circuit and a light-emitting apparatus thereof are provided. The driving circuit includes a voltage providing unit, a voltage setting unit, a current feedback unit and a current dithering unit. The voltage providing unit receives a voltage setting signal and an input voltage to provide an emission driving voltage to a first terminal of an LED string. The voltage setting unit receives an emission feedback signal to provide a voltage setting signal. The current feedback unit provides the emission feedback signal and sequentially receives current setting voltages to sequentially set a driving current flowing through the LED string according to the current setting voltages. The current dithering unit receives the backlight control signal to sequentially provide the current setting voltages.
Abstract:
The disclosure provides an image uniformity compensation device. The image uniformity compensation device includes a local pre-compensation circuit, a chromaticity uniformity compensation circuit, a local post-compensation circuit, and a luminance uniformity correction circuit. A local pre-conversion performed by the local pre-compensation circuit includes the following. An image frame is divided into multiple regions, and each of the regions is converted from an optical non-linear domain to an optical linear domain to generate a corresponding region in multiple regions of a converted frame. A local post-conversion performed by the local post-compensation circuit includes the following. An image frame is divided into multiple regions, and each of the regions is converted from the optical linear domain to the optical non-linear domain to generate a corresponding region in multiple regions of a converted frame.
Abstract:
The disclosure provides a light cabinet, including multiple light boards and multiple light-board controllers. The light boards form a first light-board array of the light cabinet. The light-board controllers are arranged one-to-one on the light boards. The light-board controllers of the light boards in a first column of the first light-board array are connected in series to form a first controller string. The output terminal of the first controller string is connected electrically to an input terminal of a second controller string in a corresponding column of a second light-board array of another light cabinet. The input terminal of the first controller string is connected electrically to a first output terminal of a video data splitter (or an output terminal of a third controller string in a corresponding column of a third light-board array of yet another light cabinet).
Abstract:
A circuit arrangement for controlling a backlight source and an operation method are provided. The circuit arrangement includes a generator. The generator receives a sync signal and generates a pulse width modulation signal synchronous with the sync signal to control the backlight source. The sync signal indicates a frequency of a video including a series of image frames. The sync signal includes a sync period corresponding to a frame of the video. The pulse width modulation signal includes a first waveform pattern in a first sub-period of the sync period and a second waveform pattern in a second sub-period of the sync period. Each of the first waveform pattern and the second waveform pattern includes at least one active pulse. The first waveform pattern is substantially identical to the second waveform pattern.
Abstract:
A circuit arrangement for controlling a backlight source and an operation method are provided. The circuit arrangement includes a generator. The generator receives a sync signal and generates a pulse width modulation signal synchronous with the sync signal to control the backlight source. The sync signal indicates a frequency of a video including a series of image frames. The sync signal includes a sync period corresponding to a frame of the video. The pulse width modulation signal includes a first waveform pattern in a first sub-period of the sync period and a second waveform pattern in a second sub-period of the sync period. Each of the first waveform pattern and the second waveform pattern includes at least one active pulse. The first waveform pattern is substantially identical to the second waveform pattern.