Abstract:
The disclosure provides a display equipment, a brightness compensation device, and a brightness compensation method. The brightness compensation device includes a variable refresh rate (VRR) detection circuit and a control circuit. The VRR detection circuit and the control circuit receive a video stream from a video source device, and the video stream includes a VRR video frame. The VRR detection circuit detects a blanking period of the VRR video frame and generates a detection result. The control circuit outputs the frame data of the VRR video frame to the display device during the valid data period of the VRR video frame. The control circuit repeatedly outputs the frame data of the VRR video frame to the display device during the blanking period of the VRR video frame according to the detection result until the blanking period ends.
Abstract:
A method of backlight control for a display panel is provided. The display panel is configured to display with a variable refresh rate in a plurality of frame periods each having a fixed period and a variable period. The method includes steps of: generating a first backlight control signal in the fixed period of a frame period; determining whether a liquid crystal (LC) transition time corresponding to the frame period ends before an end time of the variable period of the frame period; generating a second backlight control signal in the variable period of the frame period when the LC transition time ends before the end time of the variable period of the frame period; and generating a compensation backlight control signal in a next frame period according to a backlight duty cycle of the frame period.
Abstract:
A synchronous backlight device and an operation method thereof are provided. The synchronous backlight device includes a pulse width modulation (PWM) control circuit and a backlight driving circuit. The PWM control circuit receives the video sync information from a video processing circuit and generates a PWM control signal. Wherein, the video sync information defines a plurality of video frame periods, the PWM control circuit at least divides each of the video frame periods into a first period and a second period, the lengths of the first periods of the video frame periods are equal to one another. The frequency of the PWM control signal in the first periods is different from the frequency of the PWM control signal in the second periods. The backlight driving circuit drives the backlight source of a display panel in accordance with the PWM control signal.
Abstract:
A circuit arrangement for controlling a backlight source and an operation method are provided. The circuit arrangement includes a generator. The generator receives a sync signal and generates a pulse width modulation signal synchronous with the sync signal to control the backlight source. The sync signal indicates a frequency of a video including a series of image frames. The sync signal includes a sync period corresponding to a frame of the video. The pulse width modulation signal includes a first waveform pattern in a first sub-period of the sync period and a second waveform pattern in a second sub-period of the sync period. Each of the first waveform pattern and the second waveform pattern includes at least one active pulse. The first waveform pattern is substantially identical to the second waveform pattern.
Abstract:
A synchronous backlight device and an operation method thereof are provided. The synchronous backlight device includes a pulse width modulation (PWM) control circuit and a backlight driving circuit. The PWM control circuit receives the video sync information from a video processing circuit and generates a PWM control signal. Wherein, the video sync information defines a plurality of video frame periods, the PWM control circuit at least divides each of the video frame periods into a first period and a second period, the lengths of the first periods of the video frame periods are equal to one another. The frequency of the PWM control signal in the first periods is different from the frequency of the PWM control signal in the second periods. The backlight driving circuit drives the backlight source of a display panel in accordance with the PWM control signal.
Abstract:
A light-emitting diode driving device includes a light-emitting diode driving chip, for driving the one or more light-emitting diode strings according to a feedback voltage associated with the one or more light-emitting diode strings, and a voltage limiter, having a terminal coupled to the light-emitting diode driving chip and another terminal coupleable to the one or more light-emitting diode strings, for generating the feedback voltage for provision to the light-emitting diode driving chip according to a bottom voltage of the one or more light-emitting diode strings, and limiting the feedback voltage not to exceed a preset level; wherein the voltage limiter starts limiting the feedback voltage to substantially the preset level when the bottom voltage rises to the preset level.
Abstract:
The disclosure provides a display equipment, a brightness compensation device, and a brightness compensation method. The brightness compensation device includes a variable refresh rate (VRR) detection circuit and a control circuit. The VRR detection circuit and the control circuit receive a video stream from a video source device, and the video stream includes a VRR video frame. The VRR detection circuit detects a blanking period of the VRR video frame and generates a detection result. The control circuit outputs the frame data of the VRR video frame to the display device during the valid data period of the VRR video frame. The control circuit repeatedly outputs the frame data of the VRR video frame to the display device during the blanking period of the VRR video frame according to the detection result until the blanking period ends.
Abstract:
An LED driving circuit and a light-emitting apparatus thereof are provided. The driving circuit includes a voltage providing unit, a voltage setting unit, a current feedback unit and a current dithering unit. The voltage providing unit receives a voltage setting signal and an input voltage to provide an emission driving voltage to a first terminal of an LED string. The voltage setting unit receives an emission feedback signal to provide a voltage setting signal. The current feedback unit provides the emission feedback signal and sequentially receives current setting voltages to sequentially set a driving current flowing through the LED string according to the current setting voltages. The current dithering unit receives the backlight control signal to sequentially provide the current setting voltages.
Abstract:
The disclosure provides a light cabinet, including multiple light boards and multiple light-board controllers. The light boards form a first light-board array of the light cabinet. The light-board controllers are arranged one-to-one on the light boards. The light-board controllers of the light boards in a first column of the first light-board array are connected in series to form a first controller string. The output terminal of the first controller string is connected electrically to an input terminal of a second controller string in a corresponding column of a second light-board array of another light cabinet. The input terminal of the first controller string is connected electrically to a first output terminal of a video data splitter (or an output terminal of a third controller string in a corresponding column of a third light-board array of yet another light cabinet).
Abstract:
A circuit arrangement for controlling a backlight source and an operation method are provided. The circuit arrangement includes a generator. The generator receives a sync signal and generates a pulse width modulation signal synchronous with the sync signal to control the backlight source. The sync signal indicates a frequency of a video including a series of image frames. The sync signal includes a sync period corresponding to a frame of the video. The pulse width modulation signal includes a first waveform pattern in a first sub-period of the sync period and a second waveform pattern in a second sub-period of the sync period. Each of the first waveform pattern and the second waveform pattern includes at least one active pulse. The first waveform pattern is substantially identical to the second waveform pattern.