Abstract:
A golf club head having accelerometer and gyroscope sensors measuring swing motion acceleration and angular rate values. Inputs of force and torque to the golf club head during the swing motion may be unknown, such that a system of motion equations may be used to calculate functions for the unknown input force and torque, as well as roll angle and pitch angle for the golf club head, and compensate for gyroscope bias, without using static leveling processes.
Abstract:
Golf performance and equipment characteristics may be determined by analyzing the impact between a golf ball and an impacting surface. In some examples, the impacting surface may be a golf club face. The impact between the golf ball and the surface may be measured based on sound and/or motion sensors (e.g., gyroscopes, accelerometers, etc.). Based on motion and/or sound data, various equipment-related information including golf ball compression, club head speed and impact location may be derived. Such information and/or other types of data may be conveyed to a user to help improve performance, aid in selecting golf equipment and/or to insure quality of golfing products.
Abstract:
Golf club heads having sensors configured to measure one or more swing parameters are provided. The golf club head may include several gyroscopes and accelerometers. In one embodiment, the club head contains three gyroscopes that measure angular rate data along different orthogonal axes. At least one gyroscope may an analog gyroscope. Accelerometers may provide data regarding the three orthogonal axes associated with the gyroscopes. The club head may further include software and/or hardware that perform computer-executed methods for determining one or more swing parameters. Exemplary club heads may include a display device for displaying an output of the swing parameter(s). Further aspects of the invention relate to novel methods and algorithms for calculating measurements relating to the swing parameters.
Abstract:
A golf club having a sensor that is removably connected at one or more positions of the golf club where the sensor comprises an inertial measurement unit including an accelerometer capable of measuring linear accelerations in three orthogonal axes and a gyroscope capable of measuring an angular rate of rotation around the same axes. The sensor may further comprise a processor which may perform instructions to detect the impact of the golf club with a golf ball and determine the start of the golf swing without any additional input from the user. The sensor may further have a power management system to extend the life of the power source.
Abstract:
Golf club heads having sensors configured to measure one or more swing parameters are provided. The golf club head may include several gyroscopes and accelerometers. In one embodiment, the club head contains three gyroscopes that measure angular rate data along different orthogonal axes. At least one gyroscope may an analog gyroscope. Accelerometers may provide data regarding the three orthogonal axes associated with the gyroscopes. The club head may further include software and/or hardware that perform computer-executed methods for determining one or more swing parameters. Exemplary club heads may include a display device for displaying an output of the swing parameter(s). Further aspects of the invention relate to novel methods and algorithms for calculating measurements relating to the swing parameters.
Abstract:
A golf club head having accelerometer and gyroscope sensors measuring swing motion acceleration and angular rate values. Inputs of force and torque to the golf club head during the swing motion may be unknown, such that a system of motion equations may be used to calculate functions for the unknown input force and torque, as well as roll angle and pitch angle for the golf club head, and compensate for gyroscope bias, without using static leveling processes.
Abstract:
A golf club having a sensor that is releasably connected is disclosed, where the sensor comprises a plurality of inertial measurement units. Each inertial measurement unit is able to measure linear accelerations along three orthogonal axes and angular rates of rotation along the same three orthogonal axes. Each inertial measurement unit is positioned such that at least two of the axes of each inertial measurement unit are oriented differently. Additionally, a process may be implemented by a processor to expand the measurement range of the sensor.
Abstract:
A golf club having a sensor that is removably connected at one or more positions of the golf club where the sensor comprises an inertial measurement unit including an accelerometer capable of measuring linear accelerations in three orthogonal axes and a gyroscope capable of measuring an angular rate of rotation around the same axes. The sensor may further comprise a processor which may perform instructions to detect the impact of the golf club with a golf ball and determine the start of the golf swing without any additional input from the user. The sensor may further have a power management system to extend the life of the power source.
Abstract:
Golf club heads having sensors configured to measure one or more swing parameters are provided. The golf club head may include several gyroscopes and accelerometers. In one embodiment, the club head contains three gyroscopes that measure angular rate data along different orthogonal axes. At least one gyroscope may an analog gyroscope. Accelerometers may provide data regarding the three orthogonal axes associated with the gyroscopes. The club head may further include software and/or hardware that perform computer-executed methods for determining one or more swing parameters. Exemplary club heads may include a display device for displaying an output of the swing parameter(s). Further aspects of the invention relate to novel methods and algorithms for calculating measurements relating to the swing parameters.
Abstract:
A golf club having a sensor that is removably connected at one or more positions of the golf club where the sensor comprises an inertial measurement unit including an accelerometer capable of measuring linear accelerations in three orthogonal axes and a gyroscope capable of measuring an angular rate of rotation around the same axes. The sensor may further comprise a processor which may perform instructions to detect the impact of the golf club with a golf ball and determine the start of the golf swing without any additional input from the user. The sensor may further have a power management system to extend the life of the power source.