摘要:
Provided a terahertz-wave detection element with high spatial resolution and suppressing a crack occurrence. A method of manufacturing the detection element capable of detecting a spatial intensity distribution of a terahertz wave includes: a step of forming an oxide layer on one main surface of a first substrate consisting of an electro-optic crystal; a step of joining the one main surface of the first substrate and a second substrate by an adhesive consisting; a step of thinning the first substrate of a joined body, to a thickness of 1-30 μm by polishing the first substrate; and a step of obtaining a large number of terahertz-wave detection elements by cutting the joined body. The oxide layer is formed such that the first substrate becomes convex to a side of the one main surface by causing a tensile stress to act on it.
摘要:
A device of irradiating an electromagnetic wave irradiates an electromagnetic wave having a target frequency in a range of 0.1 THz to 30 THz to the outside of a crystal. The device includes a main body 7 composed of a non-linear optical crystal and a sub wavelength grating structure 5 formed on a surface of the main body 7. The sub wavelength grating structure 5 includes column shaped bodies 6 regularly arranged on a surface 7a of the main body 7. Each of the column shaped bodies 6 includes a constant width part 6d having a constant width and a base part 6g provided from the surface toward the constant width part 6d. A surface 6b of the base part 6g has a shape of an arc having a center of curvature in the outside of the base part 6g viewed in a cross section of the column shaped body cut along a direction X or Y in which the column shaped bodies are arranged.
摘要:
It is provided a wavelength converting device oscillating an idler light having a wavelength of 5 to 10 μm from a pump light. The wavelength of the idler light is longer than that of the pump light. The wavelength converting device includes a wavelength converting layer 5 of a semiconductor non-linear optical crystal and having a thickness of 50 μm or smaller. The wavelength converting layer 5 includes a crystal orientation inversion structure wherein crystal orientation of the optical crystal is inverted at a predetermined period and at least one flat main face 5b. The device further includes a Peltier device 2 controlling a temperature of the wavelength converting layer 5; and a clad portion 4 joined with the flat main face 5b of the wavelength converting layer 5 and provided between the wavelength converting layer 5 and the Peltier device 2. The pump light, idler light and signal light satisfies a particular phase matching condition.
摘要:
A white light generating device, for generating white light from an excitation light of a laser light having a wavelength of from 280 nm-495 nm, includes a fluorescent body generating a fluorescence having a wavelength longer than a wavelength of the excitation light. The fluorescent body includes an emission-side end surface emitting excitation light and fluorescence, an opposing end surface on an opposite side of the emission-side end surface, and an outer peripheral surface. The emission-side end surface has an area larger than an area of the opposing end surface, and the outer peripheral surface of the fluorescent body includes a part inclined with respect to a central axis of the fluorescent body by from 3.4°-23° over an entire periphery of the fluorescent body. The emission-side end surface has an area of from 0.3 mm2-1.52 mm2.
摘要:
Provided a terahertz-wave detection element in which the occurrence of warping and a crack is suppressed. The detection element includes: an electro-optic crystal layer of a thickness 1-10 μm in which a refractive index at an incident position of the terahertz wave changes in accordance with incident intensity; a substrate supporting the electro-optic crystal layer; a resin layer of a thickness 0.1-1 μm that joins them; and a total reflection layer formed on a surface of the electro-optic crystal, consisting of a first dielectric multilayer film and having a thickness not less than 1 μm. The detection element detects a spatial-characteristics distribution generated in probe light in superposition with the terahertz wave, thereby to detect the spatial intensity distribution of the incident terahertz wave. A ratio of a thickness of the resin layer to that of the total reflection layer is set not more than ⅓.
摘要:
Provided a terahertz-wave detection element having high spatial resolution in which the occurrence of warping and a crack is suitably suppressed. The detection element includes: an electro-optic crystal layer in which a refractive index at an incident position of the terahertz wave changes in accordance with incident intensity of the terahertz wave; and a substrate supporting the electro-optic crystal layer. The detection element detects a spatial-characteristics distribution generated in probe light in superposition with the terahertz wave, thereby to detect the spatial intensity distribution of the incident terahertz wave. A joined part between the electro-optic crystal and the supporting substrate is an amorphous layer consisting of an oxide including a constituent element of the electro-optic crystal and the substrate, and also having a thickness of 1-50 nm. A thickness of the electro-optic crystal layer is 1-30 μm.
摘要:
A device for irradiating an electromagnetic wave irradiates an electromagnetic wave having a target frequency in a range of 0.1 THz to 30 THz to the outside of a non-linear optical crystal. The device includes a main body composed of a non-linear optical crystal and a sub wavelength grating structure formed on a surface of the main body. The sub wavelength grating structure includes column shaped bodies regularly arranged on a surface of the main body. Each of the column shaped bodies includes a constant width part having a constant width and a base part provided from the surface toward the constant width part. A surface of the base part has a shape of an arc having a center of curvature in the outside of the base part viewed in a cross section of the column shaped body cut along a direction in which the column shaped bodies are arranged.
摘要:
An optical modulation device 1 includes a supporting body 2 including a pair of grooves 2b, 2c and a protrusion 2d between the grooves, a ridge par 6 including a channel type optical wave guide capable of multi mode propagation, a first side plate part 3A formed in a first side of the ridge part 6, a second side plate part 3B formed in a second side of the ridge part, a first adhesive layer 4A adhering the first side plate part 3A and the supporting body 2, a second adhesive layer 4B adhering the second side plate part 3B and the supporting body 2, and a third adhesive layer 4C adhering the ridge part 6 and the protrusion 2d. The device 1 further includes a first electrode 7A provided on a side face 6b of the ridge part on the first groove side, and a side face 3b and an upper face 3c of the first side plate part, and a second electrode 7B provided on a side face 6c of the ridge part 6 in the second groove side, the second groove 2c and a side face 3b and an upper face 3c of the second side plate part 3B. The first electrode 7A and the second electrode 7B apply a modulation voltage modulating light propagating in the channel type optical wave guide.
摘要:
An optical scanning device includes a supporting body 2; an optical waveguide composed of a single crystal having electro-optic effect and integrated with the supporting body directly or through a clad layer; a plurality of periodic domain inversion parts formed in the optical waveguide, the periodic domain inversion parts having periods different from each other; and a plurality of electrodes capable of applying voltages on the periodic domain inversion parts, respectively, to generate diffraction gratings in the periodic domain inversion parts, respectively. The clad layer is composed of a material having a refractive index lower than a refractive index of the single crystal forming the optical waveguide. Each of the periodic domain inversion parts on which the voltage is applied is selected to generate the diffraction grating in the selected periodic domain inversion part so that a propagation light propagated in the optical waveguide is emitted to the outside of the optical scanning device as a diffracted light.
摘要:
A phosphor element comprises: a support substrate; an optical waveguide for propagating an excitation light through the waveguide, the optical waveguide comprising a phosphor generating a fluorescence, and the optical waveguide comprising an emission side end surface emitting the excitation light and the fluorescence, an opposing end surface opposing the emission side end surface, a bottom surface, a top surface opposing the bottom surface and a pair of side surfaces; a bottom surface side clad layer covering the bottom surface of the optical waveguide; a top surface side clad layer covering the top surface of the optical waveguide; side surface side clad layers covering the side surfaces of the optical waveguide, respectively; a top surface side reflection film covering the top surface side clad layer; side surface side reflection films covering the side surface side clad layers, respectively; and a bottom surface side reflection film provided between the support substrate and the bottom surface side clad layer.