Abstract:
The present invention provides a new uplink (UL) Physical layer Protocol Data Unit (PPDU) frame format to support Multi-User Multiple Input Multiple Output (MU-MIMO) and Orthogonal Frequency Division Multiple Access (OFDMA), and methods, apparatuses, etc. therefor. In an aspect of the present invention, a method by a station (STA) for transmitting an UL PPDU frame to an Access Point (AP) simultaneously with one or more other STAs in a Wireless Local Area Network (WLAN) may include receiving a frame including a parameter for the PPDU frame from the AP; and participating in UL MU PPDU frame transmission based on the parameter.
Abstract:
The present disclosure relates to a method and apparatus for determining a bandwidth for Multi-User (MU) transmission in a High Efficiency WLAN (HEW). According to one aspect of the present disclosure, a method for transmitting by a Station (STA) to an Access point (AP) an uplink Physical layer Protocol Data Unit (PPDU) frame in a WLAN may be provided. The method may include receiving a trigger frame including bandwidth information, the trigger frame eliciting a transmission of the uplink PPDU frame including a data unit of the STA and at least one data unit of at least one other STA, and transmitting the data unit of the STA in the uplink PPDU frame, based on an available bandwidth of the STA and a bandwidth indicated by the bandwidth information included in the trigger frame.
Abstract:
The present disclosure relates to a method and apparatus for uplink channel access in a High Efficiency WLAN (HEW). According to one aspect, a method for transmitting an uplink frame by a station (STA) to an access point (AP) in a wireless local area network may be provided. The method may include receiving from the AP a trigger frame for eliciting an uplink transmission from the STA, transmitting to the AP the uplink frame according to a type of the trigger frame, wherein when the uplink frame is transmitted in an uplink multiple user (MU) transmission, the uplink frame includes a padding added by the STA such that transmissions from a plurality of STAs including the STA in the uplink MU transmission end at a same time indicated by the trigger frame, and receiving from the AP a frame in response to the uplink MU transmission a predetermined time after an end of the uplink MU transmission.
Abstract:
A method implemented by a station (STA) in a Wireless Local Area Network (WLAN) to acknowledge a downlink (DL) multi-user (MU) physical layer (PHY) Protocol Data Unit (PPDU) transmitted by an access point (AP). The method includes receiving the DL MU PPDU, decoding a frame from the DL MU PPDU, where the frame includes an indication requesting the STA to provide a trigger-based immediate acknowledgement, determining whether trigger information for an uplink (UL) MU transmission has been obtained from the DL MU PPDU, responsive to a determination that the trigger information has been obtained from the DL MU PPDU, transmitting a trigger-based immediate acknowledgement frame to the AP during the UL MU transmission, according to the trigger information, and responsive to a determination that the trigger information has not been obtained from the DL MU PPDU, refraining from transmitting the trigger-based immediate acknowledgement frame to the AP.
Abstract translation:一种由无线局域网(WLAN)中的站(STA)实现以确认由接入点(AP)发送的下行链路(DL)多用户(MU)物理层(PHY)协议数据单元(PPDU) 。 该方法包括接收DL MU PPDU,解码来自DL MU PPDU的帧,其中帧包括请求STA提供基于触发的立即确认的指示,确定是否已经有针对上行链路(UL)MU传输的触发信息 从DL MU PPDU获得的响应于从DL MU PPDU获得的触发信息的确定,根据触发信息在UL MU传输期间向AP发送基于触发的即时确认帧,并响应于 确定没有从DL MU PPDU获得触发信息,避免向AP发送基于触发的即时确认帧。
Abstract:
Methods and apparatus for resource allocation for multiple user transmission in a High Efficiency WLAN (HEW) are described. An embodiment is a method for transmitting a Physical layer Protocol Data Unit (PPDU) by an access point (AP) to a plurality of stations (STAs). The method may include transmitting, to the plurality of STAs, a preamble including a High-Efficiency SIGNAL (HE-SIG) field, an HE-Short Training Field (HE-STF) field and an HE-Long Training Field (HE-LTF) field in the PPDU on a transmission channel; and transmitting, on the transmission channel, a data field including a group addressed frame transmitted in a first subchannel among a plurality of subchannels into which the transmission channel is divided.
Abstract:
The present disclosure relates to a method and apparatus for determining a bandwidth for Multi-User (MU) transmission in a High Efficiency WLAN (HEW). According to one aspect of the present disclosure, a method for transmitting by a Station (STA) to an Access point (AP) an uplink Physical layer Protocol Data Unit (PPDU) frame in a WLAN may be provided. The method may include receiving a trigger frame including bandwidth information, the trigger frame eliciting a transmission of the uplink PPDU frame including a data unit of the STA and at least one data unit of at least one other STA, and transmitting the data unit of the STA in the uplink PPDU frame, based on an available bandwidth of the STA and a bandwidth indicated by the bandwidth information included in the trigger frame.
Abstract:
The present invention relates to a method and apparatus for transmitting and receiving signals using a Physical layer Protocol Data unit (PPDU) format to which Space-Time Block Coding (STBC) is applied in a Wireless Local Area Network (WLAN). According to one aspect of the present invention, a method for transmitting data to a plurality of Stations (STAs) on a transmission channel by an Access Point (AP) in a WLAN may be provided. The transmission channel may be divided into a plurality of subchannels allocated to the plurality of STAs. The method may include generating a High Efficiency-Long Training Field (HE-LTF) field having a length determined based on whether Space-Time Block Coding (STBC) is applied to the plurality of subchannels, and transmitting a Physical layer Protocol Data Unit (PPDU) frame including the HE-LTF field and a plurality of data units for the plurality of STAs to the plurality of STAs.
Abstract:
The present invention relates to a transmission and receiving method and apparatus using a dynamically determined Inter-Frame Space (IFS) in a Wireless Local Area Network (WLAN). According to one aspect of the present invention, a method for processing a received frame by a Station (STA) in a WLAN may include receiving a first frame including downlink data for a plurality of STAs, if the received first frame has no error, transmitting a second frame including an ACKnowledgement (ACK) of the STA simultaneously with ACKs of one or more other STAs, and if the received first frame has an error, performing carrier sensing using a variably determined IFS.
Abstract:
In wireless communications for multi-users, a station may receive a trigger frame including a transmitter address field. When the trigger frame is a multi-user request-to-send (MU-RTS) frame eliciting clear-to-send (CTS) frames from a plurality of stations, the station transmit a CTS frame including a first receiver address field in response to the trigger frame. The first receiver address field may be set equal to the transmitter address field. When the trigger frame elicits data frames from a plurality of stations, the station transmit a data frame including a second receiver address field in response to the trigger frame. The second receiver address field may be set to a destination address. Other methods, apparatus, and computer-readable media are also disclosed.
Abstract:
Methods and apparatus for transmission opportunity limits, backoff procedures, uplink random access related to uplink multi-user transmission in a High Efficiency WLAN (HEW) are described. An embodiment is a method for performing a frame exchange sequence including an uplink multi-user (UL MU) transmission by an access point (AP) in a wireless local area, the method including acquiring a transmission opportunity (TXOP) for initiating the frame exchange sequence; determining if a time required for the frame exchange sequence not including a control response frame exceeds a TXOP limit; and transmitting a trigger frame to one or more stations (STAs) when the time required for the frame exchange sequence not including the control response frame does not exceed the TXOP limit.