Abstract:
A method performed by a first wireless station is described. The method includes determining, by a Media Access Control (MAC) layer of the first wireless station, a plurality of MAC Protocol Data Units (MPDUs) to transmit to a second wireless station in an aggregated MPDU, wherein a physical layer of the first station is to use a plurality of codewords to represent the plurality of MPDUs, wherein a first MPDU in the plurality of MPDUs is to be represented by a first set of codewords and a second MPDU is to be represented by a second set of codewords from the plurality of codewords; appending padding to the first MPDU such that the first set of codewords does not share a codeword with the second set of codewords; and transmitting the first set of codewords and the second set of codewords to the second wireless station.
Abstract:
A sounding method by a receiving device is provided. The receiving device receives an NDPA frame from a transmitting device, and then receives an NDP frame from the transmitting device. After receiving the NDP frame, the receiving device transmits to the transmitting device a feedback frame including subchannel information measured on a subchannel that is allocated to the first receiving device among a plurality of subchannels into which a predetermined band is divided.
Abstract:
A method for determining a number of symbols in a data field of a physical layer (PHY) protocol data unit (PPDU) is described. The method includes determining, by a wireless transmitting device, whether aggregation is to be applied to the PPDU; determining, by the wireless transmitting device, whether a PSDU length indication of the data field for the PPDU is greater than zero; selecting, by the wireless transmitting device, a first value in response to determining that (1) aggregation is not to be applied to the PPDU and (2) the PSDU length indication for the PPDU is greater than zero; and calculating, by the wireless transmitting device, the number of symbols in the data field of the PPDU based on the first value, wherein the first value is the PSDU length indication, wherein the first value is provided in a transmission vector (TXVECTOR).
Abstract:
A method by a wireless transmitting device for distinguishing between a quality of service (QoS) management frame and a non-QoS management frame is described. The method includes generating a frame that includes a frame header, wherein the frame header includes a frame control field, wherein the frame control field includes a partial traffic identifier or subtype (PTID/subtype) subfield, wherein the PTID/subtype subfield indicates whether the frame is a quality of service (QoS) management frame or a non-QoS management frame and transmitting the frame through a wireless medium.
Abstract:
Disclosed are methods and apparatuses for transmitting and receiving a frame in a WLAN. A method for transmitting a frame, performed in a first station, may comprise receiving a first PPDU; determining whether a BSS of the first PPDU is a BSS to which the first station belongs or a BSS to which the first station does not belong; when the BSS of the first PPDU is the BSS to which the first station does not belong and a received signal strength of the first PPDU is higher than a first threshold, setting a virtual carrier sensing by using information included in a preamble of the first PPDU. Therefore, performance of the WLAN can be enhanced.
Abstract:
In a WLAN, a device sets a first NAV to a bandwidth used by a signal from a second device. The device selects a channel that does not correspond to the bandwidth from among a plurality of channels when a predetermined condition is satisfied. The predetermined condition includes a condition that the first NAV is set. The device transmits a first frame on the selected channel.
Abstract:
In a WLAN, a device sets a first NAV to a bandwidth used by a signal from a second device. The device selects a channel that does not correspond to the bandwidth from among a plurality of channels when a predetermined condition is satisfied. The predetermined condition includes a condition that the first NAV is set. The device transmits a first frame on the selected channel.
Abstract:
A transmission control method by a device belonging to a BSS is provided in a WLAN. The device receives a frame. When a transmission condition including a first condition that a BSS color of the frame indicates a neighbor BSS of the BSS is satisfied, the device attempts a transmission at a time between a detection time of the BSS color and an end time of the frame.
Abstract:
A transmission deferring method is provided by a device in a WLAN. The device receives a frame including duration information indicating transmission deferring duration and address information indicating an address of a target device for the transmission deferring duration, and defers a transmission to the target device during the transmission deferring duration.
Abstract:
An ACK method is provided by a receiving device in a WLAN. The receiving device receives a plurality of data units having a plurality of TIDs and transmits an ACK frame including a plurality of ACK information fields for at least part of the plurality of data units. An ACK information field for a data unit satisfying a first condition among the plurality of ACK information fields includes a TID and a block ACK bitmap indicating whether the data unit has been successfully received. An ACK information field for a data unit satisfying a second condition and having been successfully received among the plurality of ACK information fields includes the first TID and does not include a block ACK bitmap.