Abstract:
The present application provides a micromechanical (MEMS) based zoom lens system, for use in miniature device applications, such as miniature electronic imaging devices. The MEMS-based zoom lens system comprises at least four optical elements, or two Alvarez or Lohmann lenses, that are configured for passage of optical signals therethrough along an optical signal path. Each optical element is MEMS-driven and displaceable in a direction substantially transverse to the optical signal path. In use, the transverse displacement of the optical elements vary an overall focal length of the MEMS zoom lens system such as to provide an optical zoom function. A method of manufacturing a MEMS zoom lens system is also provided in a further aspect.
Abstract:
The present application provides a micromechanical (MEMS) based zoom lens system, for use in miniature device applications, such as miniature electronic imaging devices. The MEMS-based zoom lens system comprises at least four optical elements, or two Alvarez or Lohmann lenses, that are configured for passage of optical signals therethrough along an optical signal path. Each optical element is MEMS-driven and displaceable in a direction substantially transverse to the optical signal path. In use, the transverse displacement of the optical elements vary an overall focal length of the MEMS zoom lens system such as to provide an optical zoom function. A method of manufacturing a MEMS zoom lens system is also provided in a further aspect.
Abstract:
The present application provides a micromechanical (MEMS) based zoom lens system, for use in miniature device applications, such as miniature electronic imaging devices. The MEMS-based zoom lens system comprises at least four optical elements, or two Alvarez or Lohmann lenses, that are configured for passage of optical signals therethrough along an optical signal path. Each optical element is MEMS-driven and displaceable in a direction substantially transverse to the optical signal path. In use, the transverse displacement of the optical elements vary an overall focal length of the MEMS zoom lens system such as to provide an optical zoom function. A method of manufacturing a MEMS zoom lens system is also provided in a further aspect.
Abstract:
A MEMS iris diaphragm (400) for an optical system is disclosed. The MEMS iris diaphragm (400) comprises at least two layers of diaphragm structures with each layer having suspended blade members (404a, 404b, 404c, 404d, 406a, 406b, 406c, 406d) angularly spaced from each other, the at least two layers of blade members (404a, 404b, 404c, 404d, 406a, 406b, 406c, 406d) arranged to overlap and cooperate with each other to define an aperture (408) to allow light to pass through, and a rotary actuating device (401) arranged to rotate at least some of the blade members (404a, 404b, 404c, 404d, 406a, 406b, 406c, 406d) of the at least two layers about their respective axis in a non-contact manner to vary the aperture's size. A method of adjusting a size of an aperture of a MEMS iris diaphragm (400) for an optical system is also disclosed.
Abstract:
The present application provides a micromechanical (MEMS) based zoom lens system, for use in miniature device applications, such as miniature electronic imaging devices. The MEMS-based zoom lens system comprises at least four optical elements, or two Alvarez or Lohmann lenses, that are configured for passage of optical signals therethrough along an optical signal path. Each optical element is MEMS-driven and displaceable in a direction substantially transverse to the optical signal path. In use, the transverse displacement of the optical elements vary an overall focal length of the MEMS zoom lens system such as to provide an optical zoom function. A method of manufacturing a MEMS zoom lens system is also provided in a further aspect.