Abstract:
A data processing method for rapidly suppressing background high frequency noise in a digitized image. The data processing method includes configuring a graphical processing unit to perform a first amplification process, a pixel binning process or a first interpolation process, a first low-pass filtering process, a second interpolation process, a first subtraction process, a second low-pass filtering process, a second amplification process, and a second subtraction process on an input image, so as to subtract a subtraction mask from the input image and generate a noise-suppressed output image.
Abstract:
A rapid fresh digital-pathology (RFP) method for assessing an excised unfixed biological specimen stained with hematoxylin (H) or eosin (E) or both hematoxylin and eosin (HE) staining dyes. The RFP method is assisted by a rapid tissue staining (RTS) procedure which is performed on the excised unfixed biological specimen, involving a short fixation; an H-staining; a rinsing; a bluing; an E-staining; a rinsing; and finally, a covering of a stained specimen with a coverslip. The RFP method is further assisted by a multimodal nonlinear optical laser-raster-scanning approach to provide with a nonlinear multi-harmonic generation and/or a nonlinear multi-photon excitation fluorescence signal(s) for multichannel digitization and real-time digital display of H- or E- or HE-specific histopathological features while providing a centimeter-scale imaging area, a submicron digital resolution, and a sustained effective data throughput of at least 500 Megabits per second (Mbps).
Abstract:
This invention provides a device for improving laser wavelength conversion efficiency and a laser system configured to provide high-power multi-wavelength femtosecond laser pulses using the device. The device for improving laser wavelength conversion efficiency comprises a wavelength conversion member photonic crystal fiber (PCF), wherein the device for improving laser wavelength conversion efficiency improves wavelength conversion efficiency by shortening the length of the PCF. The device provided in this invention not only reduces the attenuation and dispersion caused by the optical fiber, but also improves the energy conversion efficiency within a specific wavelength range. The use of the technique not only increases the energy of light pulse, but also greatly reduces the amount of fiber used, and can maximize the energy of the desired wavelength according to experimental requirements when using laser input sources of different wavelengths.
Abstract:
The present disclosure relates to a data processing method, and more specifically, to a digital image processing method to enable a rapid noise-suppressed contrast enhancement in an optical linear or nonlinear microscopy imaging application. The disclosed method digitally mimics a hardware-based feedback-driven adaptive or controlled illumination technique by means of digitally resembling selective laser-on and laser-off states so as to selectively optimize the signal strength and hence the visibility of the weak-intensity morphologies while mostly preventing saturation of the brightest structures.
Abstract:
This invention provides a device for improving laser wavelength conversion efficiency and a laser system configured to provide high-power multi-wavelength femtosecond laser pulses using the device. The device for improving laser wavelength conversion efficiency comprises a wavelength conversion member photonic crystal fiber (PCF), wherein the device for improving laser wavelength conversion efficiency improves wavelength conversion efficiency by shortening the length of the PCF. The device provided in this invention not only reduces the attenuation and dispersion caused by the optical fiber, but also improves the energy conversion efficiency within a specific wavelength range. The use of the technique not only increases the energy of light pulse, but also greatly reduces the amount of fiber used, and can maximize the energy of the desired wavelength according to experimental requirements when using laser input sources of different wavelengths.
Abstract:
A protective assembly and an imaging equipment set are provided. The protective assembly is used to accommodate an imaging lens, and includes a housing, a transparent partition, and an adhesive member. The housing includes a tube body segment and a bottom segment that is connected to the tube body segment. A curved portion is formed on a periphery of the bottom segment, and an accommodating space is defined by the housing. The imaging lens is movably disposed in the accommodating space. An inner side of the curved portion has an inclined surface that is configured to abut against a shell of the imaging lens. The transparent partition is disposed on the bottom segment of the housing. The adhesive member has an outer surface that is sticky and an inner surface that is fixed onto a bottom surface of the housing.
Abstract:
A microscope is provided to measure HbA1c fraction. The microscope measures the HbA1c fraction of a single red blood cell (RBC) in a trace blood sample. The HbA1c fraction can be measured through a non-invasive way while the RBC flows in a human epidermal microvessel, too. The microscope comprises a laser device, an upright microscope, a light splitter, a light detector, and a mainframe. Unlike traditional methods, the HbA1c fraction can be measured in vitro or in vivo at the level of a single RBC. Accurate measurement is achieved. Misdiagnosis rate is reduced. The microscope provides HbA1c fractions from hundreds of RBCs, instead of averaging HbA1c fractions obtained from a large number of blood samples. Hence, the present invention is a method of detecting a HbA1c fraction of a single RBC, and is a microscope supporting blood-drawing measurement and non-invasive measurement simultaneously.
Abstract:
A method of data analysis is provided. The method is used for finding a long-term trend of blood glucose concentration. The method builds a model for estimating long-term glycemic variability and long-term blood glucose trajectory. Based on single-erythrocyte-level glycated hemoglobin distribution, the glycemic variability is analyzed. A first analysis method is to give a number. The number shows the level of the historical glycemic variabilities. A second analysis method is to restore the blood glucose trajectory over the past 20 weeks. Based on the single-erythrocyte-level glycated hemoglobin distribution, the present invention easily assesses blood-glucose-related clinical information for about 150 days. Hence, an important complement is obtained for diabetes-related or glucose-monitoring-related clinical applications.
Abstract:
A margin assessment method is provided. Under cooperation of harmonic generation microscopy (HGM) and a deep learning method, the margin assessment method can instantaneously and digitally determine whether a 3D image group generated by an HGM imaging system is a malignant tumor or the surrounding normal skin, so as to assist in determining margins of a lesion.
Abstract:
A method and non-transitory computer readable medium for processing an oversampled image is disclosed. Filters are applied to an oversampled image to obtain a filtered image. The image filters are Gabor filter, cosine filter, laplacian of Gaussian filter, and radial filter. The filtered image can be turned into a displayed image that is displayed. The displayed image can be a 3D image. The displayed image can be refreshed at a rate of about one frame per second.