Abstract:
A robust broadband ASE (amplified spontaneous emission) fiber light source device outputs a light beam which is little affected by temperature and radiation. The light source device is a single-pass backward or double-pass backward architecture, and has a coolerless pump laser and temperature compensated bandpass reflector. The light source device may have a high pass filtering element disposed between the wavelength division multiplexer thereof and the optical isolator thereof, so as to compensate the effect of the temperature to the mean wavelength of the light beam. The specific band of the temperature compensated bandpass reflector which reflects the light beam, and the band which the high pass filtering element transmits the light beam are within the band which the ASE unit amplifies the light beam, and the high pass filtering element mainly absorbs the light beam outside the specific band.
Abstract:
An optical fiber apparatus is suitable to operate under irradiation, more particularly to mitigating the damage of a rare-earth-doped optical fiber element as part of an optical fiber assembly causes by irradiation. The irradiation mitigation attributes to a photo-annealing apparatus including at least a shorter wavelength photo-annealing spectral content, which is relative to that of a pump light source, for effectively photo-annealing the rare-earth-doped fiber element. Photo-annealing by such shorter wavelength light results in a fast and nearly complete recovery of radiation induced attenuation of the rare-earth-doped optical fiber element in the wavelength range from 900 nm to 1700 nm.
Abstract:
This invention relates to a near real time optical compensation verification system for verifying a fiber or fiber component through internal or external compensation to achieve equivalently free space propagation of a broadband light when coupled into fiber. Preferably, no component is added to the fiber or fiber component, and the compensation method is realized through real time fiber bending, twisting or other means at either or both ends of a fiber or fiber component. The output optical characteristics of the compensated fiber or fiber component are measured by a polarimeter through changing the input light properties. The required multi-variable compensation to achieve Unitary Matrix free space condition is computed in near real time, and as the feedback to formulate the required compensation. The disclosed invention not only enhances yield in the fiber and fiber component, but also accelerates the optimization of optical fiber sensors employed free space fiber coil.
Abstract:
This patent disclosure is based on a silicon, instead of LiNbO3, waveguide chip. The disclosed silicon-based multi-function integrated-optic chip comprises a unique design and fabrication features onto it. A unique polarization-diversity coupler is designed and fabricated to couple the external light into the silicon waveguide structure. A unique two-step (vertical and lateral) taper waveguide region is designed and fabricated to bridge the polarization-diversity coupler output with the input of a multi-mode interferometer (MMI) splitter for power loss reduction. At either end of the Y-junction output, there is a phase modulator to achieve optical phase modulation through various physics mechanisms. With this newly-developed silicon-based multi-function integrated optic chip, the size and cost of fiber sensors including FOG's can be greatly reduced.
Abstract:
An optical fiber apparatus is suitable to operate under irradiation, more particularly to mitigating the damage of a rare-earth-doped optical fiber element as part of an optical fiber assembly causes by irradiation. The irradiation mitigation attributes to a photo-annealing apparatus including at least a shorter wavelength photo-annealing spectral content, which is relative to that of a pump light source, for effectively photo-annealing the rare-earth-doped fiber element. Photo-annealing by such shorter wavelength light results in a fast and nearly complete recovery of radiation induced attenuation of the rare-earth-doped optical fiber element in the wavelength range from 900 nm to 1700 nm.
Abstract:
An optical fiber apparatus and a method of recovering radiation-induced-attenuation (RIA) onto a rare-earth-doped optical fiber under irradiation are provided in this disclosure. A light source is coupled to a rare-earth doped optical fiber. The light source emits a combination of mode locked pulsed light and non-mode locked quasi-continuous-wave light. The mode locked pulsed light are used to recover RIA onto the rare-earth doped optical fiber in real time, and the non-mode locked light are used to pump the rare-earth doped optical fiber as a gain medium. Each pulsed duration of the mode locked pulsed light is much shorter than operation duration of the non-mode locked light, such that an instantaneous power of the mode locked pulsed light exceeds a saturated pumping power required for the rare-earth doped optical fiber, so as to effectively elevate the core temperature of rare-earth doped fiber to achieve a confined photo-annealed recovery of RIA onto rare-earth doped fibers.
Abstract:
This patent disclosure is based on a silicon, instead of LiNbO3, waveguide chip. The disclosed silicon-based multi-function integrated-optic chip comprises a unique design and fabrication features onto it. A unique polarization-diversity coupler is designed and fabricated to couple the external light into the silicon waveguide structure. A unique two-step (vertical and lateral) taper waveguide region is designed and fabricated to bridge the polarization-diversity coupler output with the input of a multi-mode interferometer (MMI) splitter for power loss reduction. At either end of the Y-junction output, there is a phase modulator to achieve optical phase modulation through various physics mechanisms. With this newly-developed silicon-based multi-function integrated optic chip, the size and cost of fiber sensors including FOG's can be greatly reduced.