Abstract:
Methods and arrangements to methods and arrangements to attenuate electrostatic discharges of a cable are disclosed. Embodiments may include connectors with discharge elements integrated into the connectors to interconnect conductors of a cable to attenuate or discharge an electrostatic charge built up on the conductors. In some embodiments, the conductors are momentarily connected to ground as the connector couples with another connector to interconnect a cable with, e.g., a computer. In further embodiments, the discharge elements interconnect the conductors of a cable to redistribute an electrostatic charge and thereby minimize the impact of a discharge when the cable couples with an electronic system such as a computer. Another embodiment comprises a male connector with discharge elements, which ground conductors of the cable as the cable is being inserted into the connector. The discharge elements are pushed out of the way of the conductors as the conductors couple with the connector.
Abstract:
Methods and arrangements to methods and arrangements to attenuate electrostatic discharges of a cable are disclosed. Embodiments may include connectors with discharge elements integrated into the connectors to interconnect conductors of a cable to attenuate or discharge an electrostatic charge built up on the conductors. In some embodiments, the conductors are momentarily connected to ground as the connector couples with another connector to interconnect a cable with, e.g., a computer. In further embodiments, the discharge elements interconnect the conductors of a cable to redistribute an electrostatic charge and thereby minimize the impact of a discharge when the cable couples with an electronic system such as a computer. Another embodiment comprises a male connector with discharge elements, which ground conductors of the cable as the cable is being inserted into the connector. The discharge elements are pushed out of the way of the conductors as the conductors couple with the connector.
Abstract:
Methods and arrangements to methods and arrangements to attenuate electrostatic discharges of a cable are disclosed. Embodiments may include connectors with discharge elements integrated into the connectors to interconnect conductors of a cable to attenuate or discharge an electrostatic charge built up on the conductors. In some embodiments, the conductors are momentarily connected to ground as the connector couples with another connector to interconnect a cable with, e.g., a computer. In further embodiments, the discharge elements interconnect the conductors of a cable to redistribute an electrostatic charge and thereby minimize the impact of a discharge when the cable couples with an electronic system such as a computer. Another embodiment comprises a male connector with discharge elements, which ground conductors of the cable as the cable is being inserted into the connector. The discharge elements are pushed out of the way of the conductors as the conductors couple with the connector.
Abstract:
Methods and arrangements to adapt an electronic system to attenuate electrostatic discharges of a cable as the cable is connected with a connector on the electronic system are disclosed. Embodiments may include an adapter to couple with a connector of an electronic system. The adapter may momentarily interconnect conductors of a cable with a selected conductor of the connecter to discharge to attenuate or discharge an electrostatic charge built up on the conductors of the cable. In some embodiments, the adapter includes a selector switch so the selected conductor can be selected based upon the electronic system. In other embodiments, the selected conductor is fixed.