Write-behind optimization of covering cache

    公开(公告)号:US12169455B2

    公开(公告)日:2024-12-17

    申请号:US18311699

    申请日:2023-05-03

    Abstract: Data base performance is improved using write-behind optimization of covering cache. Non-volatile memory data cache includes a full copy of stored data file(s). Data cache and storage writes, checkpoints, and recovery may be decoupled (e.g., with separate writes, checkpoints and recoveries). A covering data cache supports improved performance by supporting database operation during storage delays or outages and/or by supporting reduced I/O operations using aggregate writes of contiguous data pages (e.g., clean and dirty pages) to stored data file(s). Aggregate writes reduce data file fragmentation and reduce the cost of snapshots. Performing write-behind operations in a background process with optimistic concurrency control may support improved database performance, for example, by not interfering with write operations to data cache. Data cache may store (e.g., in metadata) data cache checkpoint information and storage checkpoint information. A stored data file may store storage checkpoint information (e.g., in a file header).

    Snapshot-based data corruption detection

    公开(公告)号:US11567839B2

    公开(公告)日:2023-01-31

    申请号:US17512337

    申请日:2021-10-27

    Abstract: Embodiments described herein detect data corruption in a distributed data set system. For example, a system comprises node(s) for processing queries with respect to a distributed data set comprising a plurality of storage segments. A write transaction resulting from a query with respect to a particular storage segment is logged in a log record that describes a modification to the storage segment. A log service provides the log record to a data server managing a portion of the distributed data set in which the storage segment is included, which performs the write transaction with respect to the storage segment. For redundancy purposes, the data server has replica(s) that manage respective replicas of the portion of the distributed data set managed thereby. For backup purposes, snapshots of the replica(s) are periodically generated. To determine a data corruption, a snapshot of one replica is cross-validated with a snapshot of another replica.

    Snapshot-based data corruption detection

    公开(公告)号:US11249866B1

    公开(公告)日:2022-02-15

    申请号:US17237707

    申请日:2021-04-22

    Abstract: Embodiments described herein detect data corruption in a distributed data set system. For example, a system comprises node(s) for processing queries with respect to a distributed data set comprising a plurality of storage segments. A write transaction resulting from a query with respect to a particular storage segment is logged in a log record that describes a modification to the storage segment. A log service provides the log record to a data server managing a portion of the distributed data set in which the storage segment is included, which performs the write transaction with respect to the storage segment. For redundancy purposes, the data server has replica(s) that manage respective replicas of the portion of the distributed data set managed thereby. For backup purposes, snapshots of the replica(s) are periodically generated. To determine a data corruption, a snapshot of one replica is cross-validated with a snapshot of another replica.

Patent Agency Ranking