摘要:
An active metric learning device includes a metric application data analysis unit, a metric optimization unit, and an attribute clustering unit. The metric application data analysis unit is formed with a metric applying module for calculating the distance between data to be analyzed, a data analyzing module for analyzing the data using a predetermined function and the distances between the data to be analyzed and outputting the result of the data analysis, and an analysis result storage unit for storing the result of the data analysis. The metric optimization unit is formed with a feedback converting module for creating side information according to the command of feedback from the user and a metric learning module for generating a metric matrix optimized under a predetermined condition using the created side information. The attribute clustering unit clusters the metric matrix optimized by the metric optimization unit and structuralizes the attributes.
摘要:
An active metric learning device includes a metric application data analysis unit, a metric optimization unit, and an attribute clustering unit. The metric application data analysis unit is formed with a metric applying module for calculating the distance between data to be analyzed, a data analyzing module for analyzing the data using a predetermined function and the distances between the data to be analyzed and outputting the result of the data analysis, and an analysis result storage unit for storing the result of the data analysis. The metric optimization unit is formed with a feedback converting module for creating side information according to the command of feedback from the user and a metric learning module for generating a metric matrix optimized under a predetermined condition using the created side information. The attribute clustering unit clusters the metric matrix optimized by the metric optimization unit and structuralizes the attributes.
摘要:
A metric learning device (110) is provided with: a storage unit (800) which stores data to be analyzed having a plurality of attributes, feedback information from a user, and metric information; a feedback converting unit (200) which converts the data to be analyzed into side information on the basis of the attribute of the data to be analyzed and/or the feedback information; a metric learning unit (300) which optimizes the metric information on the basis of the side information; a data analysis unit (400) which analyzes the data to be analyzed on the basis of the optimized metric information, and which outputs the analysis results thereof; and a client control unit (700) which displays the analysis results on a plurality of client devices, and which receives, from the plurality of client devices, feedback information which were received in response to the analysis results.
摘要:
A metric application unit receives data under analysis having a plurality of attributes and a metric indicative of the distance between the data under analysis, calculates the distance between the data under analysis, and output and stores a data analysis result which is generated from an analysis on the data under analysis with a predetermined function, using the calculated distance between the data under analysis. A metric optimization unit generates side-information based on an indication of feedback information entered from the outside and including either similarities between the data under analysis, or the attributes, or a combination thereof, generates a metric which complies with a predetermined condition, based on the generated side information, and stores the generated metric in a metric learning result storage unit.
摘要:
The invention, referred to herein as PeaCoCk, uses a unique blend of technologies from statistics, information theory, and graph theory to quantify and discover patterns in relationships between entities, such as products and customers, as evidenced by purchase behavior. In contrast to traditional purchase-frequency based market basket analysis techniques, such as association rules which mostly generate obvious and spurious associations, PeaCoCk employs information-theoretic notions of consistency and similarity, which allows robust statistical analysis of the true, statistically significant, and logical associations between products. Therefore, PeaCoCk lends itself to reliable, robust predictive analytics based on purchase-behavior.
摘要:
The data analysis apparatus (100) of the present invention includes a control unit (180) that, upon input of a plurality of data that are the object of analysis, sets constraints that take as version space a space that is enclosed by planes that contain these data and moreover that are perpendicular to each of the plurality of data in model parameter space, maximizes the size of a shape that is inscribed in a plurality of planes that enclose the version space, and finds the center of the shape.
摘要:
The invention, referred to herein as PeaCoCk, uses a unique blend of technologies from statistics, information theory, and graph theory to quantify and discover patterns in relationships between entities, such as products and customers, as evidenced by purchase behavior. In contrast to traditional purchase-frequency based market basket analysis techniques, such as association rules which mostly generate obvious and spurious associations, PeaCoCk employs information-theoretic notions of consistency and similarity, which allows robust statistical analysis of the true, statistically significant, and logical associations between products. Therefore, PeaCoCk lends itself to reliable, robust predictive analytics based on purchase-behavior.
摘要:
The invention, referred to herein as PeaCoCk, uses a unique blend of technologies from statistics, information theory, and graph theory to quantify and discover patterns in relationships between entities, such as products and customers, as evidenced by purchase behavior. In contrast to traditional purchase-frequency based market basket analysis techniques, such as association rules which mostly generate obvious and spurious associations, PeaCoCk employs information-theoretic notions of consistency and similarity, which allows robust statistical analysis of the true, statistically significant, and logical associations between products. Therefore, PeaCoCk lends itself to reliable, robust predictive analytics based on purchase-behavior.
摘要:
The invention, referred to herein as PeaCoCk, uses a unique blend of technologies from statistics, information theory, and graph theory to quantify and discover patterns in relationships between entities, such as products and customers, as evidenced by purchase behavior. In contrast to traditional purchase-frequency based market basket analysis techniques, such as association rules which mostly generate obvious and spurious associations, PeaCoCk employs information-theoretic notions of consistency and similarity, which allows robust statistical analysis of the true, statistically significant, and logical associations between products. Therefore, PeaCoCk lends itself to reliable, robust predictive analytics based on purchase-behavior.
摘要:
The invention, referred to herein as PeaCoCk, uses a unique blend of technologies from statistics, information theory, and graph theory to quantify and discover patterns in relationships between entities, such as products and customers, as evidenced by purchase behavior. In contrast to traditional purchase-frequency based market basket analysis techniques, such as association rules which mostly generate obvious and spurious associations, PeaCoCk employs information-theoretic notions of consistency and similarity, which allows robust statistical analysis of the true, statistically significant, and logical associations between products. Therefore, PeaCoCk lends itself to reliable, robust predictive analytics based on purchase-behavior.