Abstract:
Systems and methods are provided using dynamically adjustable differential output drivers. Integrated circuits such as programmable logic devices may be provided with adjustable differential output drivers for transmitting high-speed data to other integrated circuits. The peak-to-peak output voltage and common-mode voltage of the output drivers may be adjusted. Dynamic control circuitry may be used to control the settings of current sources, programmable resistors, and voltage source circuitry in the adjustable differential output driver automatically in real time. The adjustable components in the differential output driver may be adjusted by the dynamic control circuitry based on feedback information received from the integrated circuit to which the data is transmitted.
Abstract:
The on-chip impedance termination circuits can be dynamically adjusted to match transmission line impedance values. A network of termination resistors on an integrated circuit provides termination impedance to a transmission line coupled to an IO pin. The termination resistors are coupled in series and in parallel with each other. Pass gates are coupled to the resistors. The pass gates are individually turned ON or OFF to couple or decouple resistors from the transmission line. Each pass gate is set to be ON or OFF to provide a selected termination resistance value to the transmission line. The termination resistance of the resistor network can be increased or decreased to match the impedance of different transmission lines. The termination resistance can also be varied to compensate for changes in the resistors caused by temperature variations on the integrated circuit or other factors.
Abstract:
The on-chip impedance termination circuits can be dynamically adjusted to match transmission line impedance values. A network of termination resistors on an integrated circuit provides termination impedance to a transmission line coupled to an IO pin. The termination resistors are coupled in series and in parallel with each other. Pass gates are coupled to the resistors. The pass gates are individually turned ON or OFF to couple or decouple resistors from the transmission line. Each pass gate is set to be ON or OFF to provide a selected termination resistance value to the transmission line. The termination resistance of the resistor network can be increased or decreased to match the impedance of different transmission lines. The termination resistance can also be varied to compensate for changes in the resistors caused by temperature variations on the integrated circuit or other factors.
Abstract:
Systems and methods are provided using dynamically adjustable differential output drivers. Integrated circuits such as programmable logic devices may be provided with adjustable differential output drivers for transmitting high-speed data to other integrated circuits. The peak-to-peak output voltage and common-mode voltage of the output drivers may be adjusted. Dynamic control circuitry may be used to control the settings of current sources, programmable resistors, and voltage source circuitry in the adjustable differential output driver automatically in real time. The adjustable components in the differential output driver may be adjusted by the dynamic control circuitry based on feedback information received from the integrated circuit to which the data is transmitted.
Abstract:
Systems and methods are provided using dynamically adjustable differential output drivers. Integrated circuits such as programmable logic devices may be provided with adjustable differential output drivers for transmitting high-speed data to other integrated circuits. The peak-to-peak output voltage and common-mode voltage of the output drivers may be adjusted. Dynamic control circuitry may be used to control the settings of current sources, programmable resistors, and voltage source circuitry in the adjustable differential output driver automatically in real time. The adjustable components in the differential output driver may be adjusted by the dynamic control circuitry based on feedback information received from the integrated circuit to which the data is transmitted.
Abstract:
Methods and apparatus are provided for selectively setting a CM voltage for a transceiver, reducing the effect of current mismatch, and generating a voltage step that can be used for receiver detection. A circuit of the invention can include voltage generator circuitry operable to generate a plurality of voltage signals of substantially different voltages. The circuit can also include multiplexer circuitry with voltage inputs coupled to the voltage signals. The multiplexer circuitry can be operable to select a reference signal from among the voltage inputs. In addition, the circuit can include operational amplifier (“op-amp”) circuitry with a first input coupled to the reference signal and a second input coupled to an output signal of the op-amp circuitry.
Abstract:
A transmitter circuit is operable to provide an output signal in response to a first periodic signal. A multiplexer circuit is operable to provide a second periodic signal as a selected signal during a first phase of operation. The multiplexer circuit is operable to provide the output signal of the transmitter circuit as the selected signal during a second phase of operation. A sampler circuit is operable to generate first samples of the selected signal during the first phase of operation. The sampler circuit is operable to generate second samples of the selected signal during the second phase of operation. A duty cycle control circuit is operable to adjust a duty cycle of the first periodic signal based on the first and the second samples.
Abstract:
Signal detection circuitry for a serial interface oversamples the input—i.e., samples the input multiple times per clock cycle—so that the likelihood of missing a signal is reduced. Sampling may be done with a regenerative latch which has a large bandwidth and can latch a signal at high speed. The amplitude threshold for detection may be programmable, particularly in a programmable device. Thus, between the use of a regenerative latch which is likely to catch any signal that might be present, and the use of oversampling to avoid the problem of sampling at the wrong time, the likelihood of failing to detect a signal is greatly diminished. Logic, such as a state machine, may be used to determine whether the samples captured s do or do not represent a signal. That logic may be programmable, allowing a user to set various parameters for signal detection.
Abstract:
A programmable logic device integrated circuit (“PLD”) includes high-speed serial interface (“HSSI”) circuitry in addition to programmable logic circuitry. The HSSI circuitry includes multiple channels of nominal data-handling circuitry (typically including clock and data recovery (“CDR”) circuitry), and at least one channel of nominal clock management unit (“CMU”) circuitry (typically including phase-locked loop (“PLL”) circuitry or the like). To increase the flexibility with which the channels can be used, the nominal data-handling channels are equipped to alternatively perform CMU-type functions, and the nominal CMU channel is equipped to alternatively perform data-handling functions.
Abstract:
Signal offset variation caused by transistor variation/mismatch in integrated circuits may be reduced. In one embodiment, a buffer circuit has variable-valued circuit elements. Offset variation measurements are made and the variable-valued circuit elements are calibrated to reduce the measured offset variation. In another embodiment, each amplifying stage of a multi-stage buffer provides variable gain. The total DC gain of the cascade is distributed unevenly across the stages, with more DC gain being provided by amplifier stages at the beginning of the cascade than at the end. An additional pre-amplifier stage can also be provided at the beginning of the cascade.