Abstract:
A method of controlling thermal loading in a multi-speed dual-clutch transmission (DCT) that is paired with an internal combustion engine in a vehicle is provided. The method includes detecting operation of the vehicle and ascertaining a degree of thermal loading on the DCT. The method also includes selecting a remedial action corresponding to the ascertained degree of thermal loading. Additionally, the method includes activating the selected remedial action such that the thermal loading on the DCT is reduced. A vehicle having a DCT, an internal combustion engine, and a controller configured to control thermal loading in the DCT is also disclosed.
Abstract:
A method of cooling a multi-speed dual-clutch transmission (DCT) that is paired with an internal combustion engine in a vehicle includes detecting operation of the vehicle. The method also includes sensing an increase in temperature of a subsystem of the DCT while the vehicle is operating. The method also includes selecting a remedial action in response to the sensed temperature. The method aditionally includes activating the selected remedial action such that the temperature of the subsystem is reduced.
Abstract:
A vehicle includes an engine, transmission, and controller. The transmission includes a clutch pack, a clutch piston, and a position sensor. The sensor measures a changing magnetic field with respect to the piston, and encodes the measured magnetic field as a raw position signal. The controller receives the raw position signal and processes the raw position signal through a signal processing module to generate a filtered signal attenuating signal noise in the position signal. The controller determines a commanded position of the piston, and calculates separate proportional (P), derivative (D), and integral (I) control terms using the commanded position and filtered position signal. The controller also calculates a feed-forward control term using the commanded position, and a required flow rate for actuating the clutch pack as a function of the PID terms and the feed-forward commanded position term. The controller actuates the clutch pack using the commanded flow rate.
Abstract:
A vehicle includes an engine, transmission, and controller. The transmission includes a clutch pack, a clutch piston, and a position sensor. The sensor measures a changing magnetic field with respect to the piston, and encodes the measured magnetic field as a raw position signal. The controller receives the raw position signal and processes the raw position signal through a signal processing module to generate a filtered signal attenuating signal noise in the position signal. The controller determines a commanded position of the piston, and calculates separate proportional (P), derivative (D), and integral (I) control terms using the commanded position and filtered position signal. The controller also calculates a feed-forward control term using the commanded position, and a required flow rate for actuating the clutch pack as a function of the PID terms and the feed-forward commanded position term. The controller actuates the clutch pack using the commanded flow rate.
Abstract:
A control system for a transmission includes a memory module, a position module, an error module, an integral module, and an adjustment module. The memory stores a control value as a function of clutch torque. The position module controls a position of a clutch based on the control value. The error module periodically determines a slip speed error based on a difference between a target slip speed and an estimated slip speed of the clutch. The integral module periodically determines an integral of the slip speed error. The adjustment module adjusts the control value based on the integral. A method for controlling a transmission is also provided.
Abstract:
The present invention provides a method and apparatus for mathematically calculating an optimal transmission input torque value for the inertia phase and the torque phase of a ratio change. Engine output is then altered by an amount necessary to change the actual value of the transmission input torque to the calculated optimal value of transmission input torque. The timing of the clutch elements during the power-on skip through neutral downshift is established by calculating delay periods for the off-going and on-coming clutches such that a predetermined desired shift time is met. The power-on skip through neutral downshift is thereafter adaptively controlled so that aberrations are diagnosed and corrected during subsequent downshifts. The invention is carried out by monitoring engine and/or transmission characteristics including input speed, output speed and shift duration during a downshift and identifying departures from acceptable patterns. Each type of departure calls for a particular remedy, and a suitable adjustment is calculated thereafter implemented by changing one or more initial conditions for the next shift of the same type.
Abstract:
A clutch control system for a vehicle includes a shift command module and an offgoing clutch control module. The shift command module commands an upshift of a clutch-to-clutch transmission when an engine torque is less than a predetermined negative torque. The offgoing clutch control module increases an offgoing clutch pressure above a predetermined apply pressure in response to the command. An offgoing clutch is fully engaged when the offgoing clutch pressure is greater than the predetermined apply pressure.
Abstract:
A control system for a transmission includes a pressure control module and a pressure adapt module. The pressure control module operates a hydraulic control system of the transmission at a target pressure during steady-state operation of the transmission. The target pressure is based on first and second learned pressures for different predetermined first and second torque ranges. The pressure adapt module selectively adjusts at least one of the first learned pressure and the second learned pressure based on a first pressure at which a slip condition of the transmission occurs. The first and second learned pressures define a learned pressure gain and offset. When adjusting the first and second learned pressures, the pressure adapt module limits increases and decreases in the learned pressure gain offset based on a predetermined pressure gain and offset. A method is also provided.
Abstract:
A method of learning an initial capacity point of a clutch in a dual clutch transmission includes identifying when the dual clutch transmission is operating in a steady state gear condition with a first clutch continuously transmitting torque to a first shaft. When the dual clutch transmission is operating in a steady state gear condition, a second clutch is sequentially positioned in each of a plurality of application positions (Pn, Pn+1, Pn+2, . . . , Pn+i). The second clutch is configured to transmit torque to a second shaft. The second shaft is positioned in a geared state in each of the plurality of application positions. The first application position (Pn+i) in the sequence of application positions in which the second shaft is not successfully positioned in the geared state is defined as the initial capacity point of the second clutch.
Abstract:
A method for adaptively learning clutch volumes and fill level to compensate for build tolerances and clutch wear includes increasing a fill level of a clutch during an oncoming fill phase of a clutch to clutch transmission. A state of a regulator valve of the clutch to clutch transmission is monitored during the oncoming fill phase. Fill level of the clutch is adjusted before a next shift based on whether the regulator valve switches from a regulating state to a full feed state before elapse of a valid shift time.