Abstract:
Puffing of electrode grade coke during graphitization is reduced or eliminated by addition of a puffing inhibitor to the coker feedstock prior to formation of the coke.
Abstract:
Pulverized coal is slurried with hydrogen donor solvent at atmospheric pressure and fed directly into a coker furnace and coking drum. Overhead products from the coking drum are fractionated, and a portion thereof is hydrogenated and used as donor solvent. Coke is calcined in a vertical shaft calciner, and calcined coke is contacted with steam in the calciner to produce hydrogen. The hydrogen is used to hydrogenate the donor solvent.
Abstract:
Coal is fed to a liquefaction process, and a resulting slurry of ash, unconverted coal, and liquids is fed to a delayed coker. Distillates are hydrotreated and stored or recycled, and the coke is calcined at high temperature to reduce the sulfur content.
Abstract:
A delayed coking process in which the overhead vapors from a delayed coking drum are separated into light hydrocarbon products and a gas oil, and in which the gas oil is hydrotreated after being separated from the light hydrocarbon products. The hydrotreated gas oil is then combined with coker feedstock and fed to the coking drum. The process produces a coke capable of producing a graphitized product having a lower longitudinal coefficient of thermal expansion than that of the coke product produced from the same feedstock by the same process but without the hydrotreating step.
Abstract:
Loss of drilling fluid into a subterranean formation penetrated in the drilling of a well is controlled by addition to the drilling fluid of a lost circulation material comprising petroleum coke.
Abstract:
In a method for producing a distillable hydrocarbonaceous stream and carbonaceous agglomerates from a heavy crude oil by charging the crude oil and finely divided carbonaceous solids to a rotary kiln with the crude oil and carbonaceous solids being charged in a weight ratio from about 0.6 to about 1.5; tumbling the crude oil and finely divided carbonaceous solids in the rotary kiln at a temperature from about 850.degree. to about 1000.degree. F. for up to about 30 minutes to produce a vaporous stream and agglomerate particles containing a residual portion of the crude oil and finely divided carbonaceous solids; separating the agglomerate particles into a product portion of a desired particle size range and a recycle portion; grinding the recycle portion to produce the finely divided carbonaceous solids and heating the finely divided carbonaceous solids prior to recycling the carbonaceous solids to mixture with the crude oil, an improvement comprising: supplying at least a major portion of the heat required in said rotary kiln by heating the crude oil charged to the rotary kiln thereby eliminating the heating of the finely divided carbonaceous solids prior to recycling.
Abstract:
A process for producing a distillable hydrocarbonaceous stream, fuel gases and blast furnace grade coke from a heavy, high sulfur, crude oil by producing delayed coke from at least a portion of the crude oil; crushing at least a portion of the coke to provide a finely divided coke feedstock to a briquetting operation where the finely divided coke is briquetted using crude oil or topped crude oil as a binder to produce briquettes of a size from about 3/4 inch to about 3 inches with the resulting briquettes being passed to a high temperature vertical calciner where the solids are desulfurized to produce a strong blast furnace grade coke. The distillable stream and fuel gas stream are recovered from the delayed coking operation, the vertical calciner and optionally a crude oil topping operation. In some instances coke particles in the size range from about 3/4 inch to about 3 inches may be passed directly to the calciner without crushing and briquetting. However, it is preferred to crush and briquette substantially all of the coke.