摘要:
A communication control apparatus, mounted on each node of a telecommunications system, receives node type information selected by a neighboring node, and transmits node type information selected by the own node and node type information of another node. The apparatus receives the state variable signal of the neighboring node reflecting a phase representing another node's data transmission timing, and transmits a state variable signal representing the own node's data transmission timing. Subsequently, the apparatus selects the own node's node type in accordance with another node's type information received. The apparatus then varies, based on the own node's node type information selected, another node's node type information and the neighboring node's state variable signal, the state of the own node's phase in accordance with a time evolution rule based on a phase response function and a synchronization alliance function for thereby determining the own node's data transmission timing.
摘要:
A communication control apparatus, mounted on each node of a telecommunications system, receives node type information selected by a neighboring node, and transmits node type information selected by the own node and node type information of another node. The apparatus receives the state variable signal of the neighboring node reflecting a phase representing another node's data transmission timing, and transmits a state variable signal representing the own node's data transmission timing. Subsequently, the apparatus selects the own node's node type in accordance with another node's type information received. The apparatus then varies, based on the own node's node type information selected, another node's node type information and the neighboring node's state variable signal, the state of the own node's phase in accordance with a time evolution rule based on a phase response function and a synchronization alliance function for thereby determining the own node's data transmission timing.
摘要:
Each node in a communication system operates on a repetitive internal timing cycle, at certain phases in which the node transmits data and state variable signals. The state variable signals indicate the node's data transmission timing. Each node has a virtual node calculator that simulates the timing cycles of neighboring nodes according to the state variable signals received from those nodes, and a phase calculator that varies the phase state of the node according to the simulated phase states of the neighboring nodes. Neighboring nodes can therefore interact continuously, even though they transmit state variable signals only intermittently. Consequently, a group of neighboring nodes can autonomously establish and maintain transmission time slots of equal length.
摘要:
Communication control apparatus provided in nodes forming a telecommunications network includes a transmission timing calculator responsive to the state of the phase of the own node to determine a timing at which the node transmits data. The calculator is responsive to a state variable signal transmitted by a neighboring node and reflecting the phase of the neighboring node to change the state of the phase of the own node in accordance with a time development rule. The calculator monitors a phase difference of the own node against the neighboring node to calculate, based on the difference, the ratio of collision on data transmission timing between the own and neighboring nodes. The stress value corresponding to the collision ratio is stored time-serially. A stress response function value is generated such that the stored stress value causes the time development rule to shift the phase with its value made at random.
摘要:
Each node in a communication system operates on a repetitive internal timing cycle, at certain phases in which the node transmits data and state variable signals. The state variable signals indicate the node's data transmission timing. Each node has a virtual node calculator that simulates the timing cycles of neighboring nodes according to the state variable signals received from those nodes, and a phase calculator that varies the phase state of the node according to the simulated phase states of the neighboring nodes. Neighboring nodes can therefore interact continuously, even though they transmit state variable signals only intermittently. Consequently, a group of neighboring nodes can autonomously establish and maintain transmission time slots of equal length.
摘要:
A transmission timing control apparatus included in a network node constituting a telecommunications system is configured to use the reception timing of a timing signal from another node to determine the transmission timing of a timing signal of the own node and determine a time slot for transmission of a data signal in accordance with the transmission timing and the reception timing of a timing signal from the other node. A response timing signal transmitter transmits a response timing signal when received the timing signal from the other node. A transmission timing control circuit uses the reception timing of the timing signal and that of the response timing signal to determine the timing at which the own node transmits the timing signal.
摘要:
In a communication system including nodes laid out in a grid, each node operates on a repetitive internal timing cycle, at certain phases in which the node transmits data and state variable signals. The state variable signals transmitted by a node indicate its internal phase and its position in the grid. The advance of the phase at each node is governed by a phase response function, which drives neighboring nodes whose data transmissions could collide out of phase with each other, and a synchronization alliance function, which brings certain nodes having positional relationships that preclude data collisions into phase with each other. A highly efficient data transmission timing pattern can thereby be established autonomously.
摘要:
A transmission timing control apparatus included in a network node constituting a telecommunications system is configured to use the reception timing of a timing signal from another node to determine the transmission timing of a timing signal of the own node and determine a time slot for transmission of a data signal in accordance with the transmission timing and the reception timing of a timing signal from the other node. A response timing signal transmitter transmits a response timing signal when received the timing signal from the other node. A transmission timing control circuit uses the reception timing of the timing signal and that of the response timing signal to determine the timing at which the own node transmits the timing signal.
摘要:
In a communication system including nodes laid out in a grid, each node operates on a repetitive internal timing cycle, at certain phases in which the node transmits data and state variable signals. The state variable signals transmitted by a node indicate its internal phase and its position in the grid. The advance of the phase at each node is governed by a phase response function, which drives neighboring nodes whose data transmissions could collide out of phase with each other, and a synchronization alliance function, which brings certain nodes having positional relationships that preclude data collisions into phase with each other. A highly efficient data transmission timing pattern can thereby be established autonomously.
摘要:
Communication control apparatus provided in nodes forming a telecommunications network includes a transmission timing calculator responsive to the state of the phase of the own node to determine a timing at which the node transmits data. The calculator is responsive to a state variable signal transmitted by a neighboring node and reflecting the phase of the neighboring node to change the state of the phase of the own node in accordance with a time development rule. The calculator monitors a phase difference of the own node against the neighboring node to calculate, based on the difference, the ratio of collision on data transmission timing between the own and neighboring nodes. The stress value corresponding to the collision ratio is stored time-serially. A stress response function value is generated such that the stored stress value causes the time development rule to shift the phase with its value made at random.