Abstract:
An optical adapter includes an optical coupler, a plurality of fiber optic cables and an optical wavelength conversion device. The optical coupler is operable to receive a plurality of multi-mode single-wavelength optical signals having the same frequency. The plurality of fiber optic cables are arranged in parallel and each have a first end connected to the optical coupler and the other end is coupled to the optical wavelength conversion device. The optical wavelength conversion device is operable to optically convert between the plurality of multi-mode single-wavelength optical signals at the same frequency and a plurality of single-mode optical signals at different frequencies and multiplex the plurality of single-mode optical signals at the different frequencies onto a single-mode multi-wavelength optical waveguide. A corresponding optical adapter is provided for the receive side.
Abstract:
Systems and methods according to these exemplary embodiments provide for optical interconnection using optical splitters and interferometer-based optical switching. Optical signals can be routed from an input port to one or more output ports via at least one splitter and at least one interferometer, e.g., a Mach Zehnder interferometer. According to one exemplary embodiment, signal degradation associated with signal splitting is mitigated by using a binary tree of splitters and interferometers between input ports and output ports.
Abstract:
There is provided a reconfigurable optical modulator comprising a light source and a splitter operative to receive an input signal from the light source and to split the input signal into a plurality of split signals. The optical modulator comprises a plurality of optical amplifiers, each being operative to receive one of the plurality of split signals as an input and to act as a switch having a first state where the split signal is blocked and a second state where the split signal is amplified. The optical modulator comprises a plurality of modulators, each being operative to receive an amplified split signal from one of the plurality of optical amplifiers and to modulate the amplified split signal into a modulated signal. The optical modulator comprises an optical combiner operative to combine a plurality of modulated signals produced by the plurality of modulators to thereby produce a modulated output signal.
Abstract:
The teachings herein provide a method and apparatus for interconnecting photonic devices using an advantageous technique that forms an end-to-end optical path between photonic circuits using photonic wire bonds and a bridging glass member. The photonic wire bonds couple the photonic circuits to respective ends of an optical waveguide formed in the glass member. The end-to-end optical path thus comprises a “composite” optical waveguide that includes the photonic wire bonds and the optical wave-guide. Advantageously, these composite optical waveguides are formed in-place according to a process whereby the various components are placed into at least a rough alignment on a substrate and, after deposition of polymer photoresist, a femtosecond laser beam traces the end-to-end optical path, thereby forming the respective photonic wire bonds and optical waveguide in place.
Abstract:
A function-specific network interface module is provided which includes a housing and a connection interface at opposing ends of the housing configured to connect to another function-specific network interface module in a cascaded manner. The function-specific network interface module further includes one or more circuit components operable to provide a dedicated network function so that a plurality of different network functions is provided when the function-specific network interface module is connected to the other function-specific network interface module via the connection interface.
Abstract:
Systems, devices and methods according to these exemplary embodiments provide for memory management techniques and systems for storing data. Data is segmented for storage in memory. According to one exemplary embodiment, each fragment is routed via a different memory bank and forwarded until they reach a destination memory bank wherein the fragments are reassembled for storage. According to another exemplary embodiment, data is segmented and stored serially in memory banks.
Abstract:
A method for allowing a second party manager to manage the liability of a first party funded liability issuer by either removing at least a fraction of the funded liability from the issuer's balance sheet or at least offsetting it with a guarantee from the manager to cover the risk of redemption of the liability. The manager will receive a discounted payment of consideration in exchange for taking on the liability. However, the payment will either be calculated such that the liability assumed will likely never be redeemed, minimizing the manager's risk, or else the payment may be invested such that the final value should exceed the potential risk of redemption.