摘要:
Disclosed is a laser device for machining material, comprising a laser beam source which supplies pulsed laser radiation, and a variable deflection unit that introduces said laser radiation into the material at different, selectable points so as to create optical breakthroughs. The inventive laser device further comprises a pulse-selecting apparatus which modifies selected laser pulses of the pulsed laser radiation regarding at least one optical parameter in such a way that no more optical breakthroughs can be created using the modified laser pulses.
摘要:
The invention relates to a device for measuring an optical penetration that is triggered in a tissue underneath the tissue surface by means of therapeutic laser radiation which a laser-surgical device concentrates in a treatment focus located in said tissue. The inventive device is provided with a detection beam path comprising a lens system which couples radiation emanating from the tissue underneath the tissue surface into the detection beam path. A detector device generating a detection signal which indicates the spatial dimension and/or position of the optical penetration in the issue is arranged downstream of the detection beam path.
摘要:
The invention relates to a method for producing cuts in a transparent material, in particular in the cornea, by creating optical openings in said material by means of laser radiation that is focused in said material, whereby the focal point is displaced in order to produce the cut from a surface grid-type array of optical openings arranged in sequence. The focal point is displaced along a trajectory and optical openings along said trajectory that are adjacent are not produced immediately after one another. In addition, the surface grid-type array of optical openings is constructed from at least two sub-grids, the optical openings of which are processed sequentially grid by grid.
摘要:
Disclosed is a laser device for machining material, comprising a laser beam source which supplies pulsed laser radiation, and a variable deflection unit that introduces said laser radiation into the material at different, selectable points so as to create optical breakthroughs. The inventive laser device further comprises a pulse-selecting apparatus which modifies selected laser pulses of the pulsed laser radiation regarding at least one optical parameter in such a way that no more optical breakthroughs can be created using the modified laser pulses.
摘要:
The invention relates to a method for forming curved sections in a transparent material, especially in a cornea, by producing optical breaks at various points in the material by means of pulsed laser beams focused into the material. The laser beam is deviated in a two-dimensional manner from a deviation point in order to form the section by arranging the optical breaks in a sequence. The two-dimensional deviation occurs such that the areas of the optical opening along a curve, whereon the optical openings are arranged in a sequence, are arranged at a distance in relation to the deviation point according to an angle function which is not linear and which is adapted to the curvature of the section. The areas along the curve adjacent to optical openings inside a specific tolerance range are arranged at an even distance.
摘要:
The invention relates to a method for producing cuts in a transparent material, in particular in the cornea, by creating optical openings in said material by means of laser radiation that is focused in said material, whereby the focal point is displaced in order to produce the cut from a surface grid-type array of optical openings arranged in sequence. The focal point is displaced along a trajectory and optical openings along said trajectory that are adjacent are not produced immediately after one another. In addition, the surface grid-type array of optical openings is constructed from at least two sub-grids, the optical openings of which are processed sequentially grid by grid.
摘要:
A method for precise working of material, particularly organic tissue, comprises the step of providing laser pulses with a pulse length between 50 fs and 1 ps and with a pulse frequency from 50 kHz to 1 MHz and with a wavelength between 600 and 2000 nm for acting on the material to be worked. Apparatus, in accordance with the invention, for precise working of material, particularly organic tissue comprising a pulsed laser, wherein the laser has a pulse length between 50 fs and 1 ps and with a pulse frequency of from 50 kHz to 1 MHz is also described.
摘要:
Disclosed is a laser device for machining material, comprising a laser beam source which supplies pulsed laser radiation, and a variable deflection unit that introduces said laser radiation into the material at different, selectable points so as to create optical breakthroughs. The inventive laser device further comprises a pulse-selecting apparatus which modifies selected laser pulses of the pulsed laser radiation regarding at least one optical parameter in such a way that no more optical breakthroughs can be created using the modified laser pulses.
摘要:
The invention relates to a method for forming curved sections in a transparent material, especially in a cornea, by producing optical breaks at various points in the material by means of pulsed laser beams focused into the material. The laser beam is deviated in a two-dimensional manner from a deviation point in order to form the section by arranging the optical breaks in a sequence. The two-dimensional deviation occurs such that the areas of the optical opening along a curve, whereon the optical openings are arranged in a sequence, are arranged at a distance in relation to the deviation point according to an angle function which is not linear and which is adapted to the curvature of the section. The areas along the curve adjacent to optical openings inside a specific tolerance range are arranged at an even distance.
摘要:
A method of forming a cut which encloses a partial volume within a transparent material, by generating optical breakthroughs in the material by means of laser radiation focused into the material along an optical axis in which the focal point is three-dimensionally adjusted so as to form the cut by serial arrangement of the optical breakthroughs, wherein the focal point is adjusted along a spatial spiral, which is located in the cut and extends along a main axis that is at substantially right angles to the optical axis.