Abstract:
The present invention relates to high porosity propped fractures and methods of creating high porosity propped fractures in portions of subterranean formations. Another embodiment of the present invention provides a method of forming a high porosity propped fracture in a subterranean formation, comprising providing a slurry comprising a fracturing fluid and proppant particulates coated with an adhesive substance; introducing the slurry into a portion of a fracture within the subterranean formation; and, depositing the proppant particulates into the portion of the fracture within the subterranean formation so as to form a high porosity propped fracture. Another embodiment of the present invention provides a high porosity propped fracture comprising proppant particulates substantially coated with an adhesive substance wherein the propped fracture has a porosity of at least about 50%.
Abstract:
The present invention provides a method of treating a wellbore penetrating a subterranean formation with a treatment fluid whereby fine particulate flowback is reduced or prevented. The method includes the steps of providing a fluid suspension including a mixture of a particulate coated with a tackifying compound, pumping the suspension into a subterranean formation and depositing the mixture within the formation whereby the tackifying compound retards movement of at least a portion of any fine particulate within the formation upon flow of fluids from the subterranean formation through the wellbore. Alternatively, the tackifying compound may be introduced into a subterranean formation in a diluent containing solution to deposit upon previously introduced particulates to retard movement of such particulates and any fines subject to flow with production of fluids from the subterranean formation.
Abstract:
Provided are methods of modifying the surface stress-activated reactivity of proppant particulates used in subterranean operations. In one embodiment, the methods comprise: providing a plurality of particulates, at least one of which comprises a mineral surface; providing a surface-treating reagent capable of modifying the stress-activated reactivity of a mineral surface of a particulate; and allowing the surface-treating reagent modify the stress-activated reactivity of at least a portion of the mineral surface of at least one particulate. In other embodiments, the methods comprise the use of particulates comprising a modified mineral surface in fluids introduced into subterranean formations.
Abstract:
The present invention relates to subterranean fracturing operations, and more particularly to fracturing fluids that includes a fluid loss control additive, and methods of using such fracturing fluids in fracturing subterranean formations. In one embodiment, a fracturing fluid of the present invention includes a viscosifier; and a fluid loss control additive that includes a deformable, degradable material.
Abstract:
The present invention provides a method of treating a subterranean formation with a particulate laden fluid whereby particulate flowback is reduced or prevented. The method includes the steps of providing a fluid suspension including a mixture of a particulate, a tackifying compound and a hardenable resin, pumping the suspension into a subterranean formation and depositing the mixture within the formation whereby the tackifying compound retards movement of at least a portion of the particulate within the formation upon flow of fluids from the subterranean formation and said hardenable resin subsequently consolidates at least a portion of said particulate within said formation.
Abstract:
The present invention provides a method of treating a wellbore penetrating a subterranean formation with a treatment fluid whereby fine particulate flowback is reduced or prevented. The method includes the steps of providing a fluid suspension including a mixture of a particulate coated with a tackifying compound, pumping the suspension into a subterranean formation and depositing the mixture within the formation whereby the tackifying compound retards movement of at least a portion of any fine particulate within the formation upon flow of fluids from the subterranean formation through the wellbore. Alternatively, the tackifying compound may be introduced into a subterranean formation in a diluent containing solution to deposit upon previously introduced particulates to retard movement of such particulates and any fines subject to flow with production of fluids from the subterranean formation.
Abstract:
Described are sealing primer compositions that can be used to reduce paint defects such as pops or vapor boil on painted plastic substrates, as well as related methods for sealing plastic substrates, and sealed plastic substrates. Sealing primer compositions of the invention include a functionalized polydiene polymer such as a hydroxylated or other functional-group-containing polybutadiene polymer.
Abstract:
Provided are methods of using fluid loss control additives that comprise a water-soluble polymer with hydrophobic or hydrophilic modification. In one embodiment, a method of providing at least some degree of fluid loss control during a subterranean treatment is provided. In an example of such a method, the method may comprise providing a treatment fluid comprising an aqueous liquid and a fluid loss control additive, the fluid loss control additive comprising a water-soluble polymer with hydrophobic or hydrophilic modification; and introducing the treatment fluid into a well bore that penetrates a subterranean formation, wherein there is at least a partial reduction in fluid loss into at least a portion of the subterranean formation from the treatment fluid and/or another aqueous fluid introduced into well bore subsequent to the treatment fluid.
Abstract:
Methods of creating high porosity propped fractures in portions of subterranean formations, including methods of forming a high porosity propped fracture in a subterranean formation comprising providing a slurry comprising a fracturing fluid and proppant particulates substantially coated with an adhesive substance; introducing the slurry into a portion of a fracture within the subterranean formation; and, depositing the proppant particulates into the portion of the fracture within the subterranean formation so as to form a high porosity propped fracture.
Abstract:
Methods of treating a portion of a subterranean formation comprising: providing partitioned, coated particulates that comprise particulates, an adhesive substance, and a partitioning agent, and wherein the adhesive substance comprises an aqueous tackifying agent or a silyl modified polyamide; substantially slurrying the partitioned, coated particulates in a treatment fluid to create a particulate slurry; and, placing the particulate slurry into the portion of the subterranean formation.