Method of Performing a Modular Multiplication and Method of Performing a Euclidean Multiplication Using Numbers with 2N Bits
    2.
    发明申请
    Method of Performing a Modular Multiplication and Method of Performing a Euclidean Multiplication Using Numbers with 2N Bits 审中-公开
    执行模数乘法的方法和使用2N位数的欧几里得乘法的方法

    公开(公告)号:US20080063184A1

    公开(公告)日:2008-03-13

    申请号:US10568749

    申请日:2004-08-20

    IPC分类号: G06F7/72 H04L9/28

    CPC分类号: G06F7/722 G06F7/5324

    摘要: The invention relates to method of performing a modular multiplication using numbers with 2n bits. The method includes the steps of breaking the numbers (A, B) down into a 2n base or a U base, U being a suitable integer; and, subsequently, performing MultModDiv—and/or MultModDivlnit-type elementary operations on the numbers with n bits resulting from the first step. The invention also relates to a method of calculating a Euclidean multiplication/division. The invention can be used for cryptographic calculations.

    摘要翻译: 本发明涉及使用2n位的数字执行模数乘法的方法。 该方法包括以下步骤:将数字(A,B)向下划分为2个基底或U个基底,U为合适的整数; 并且随后对由第一步产生的n位的数字执行MultModDiv和/或MultModDivlnit型基本操作。 本发明还涉及一种计算欧几里德乘法/除法的方法。 本发明可用于加密计算。

    Cryptographic method protected against covert channel type attacks
    3.
    发明授权
    Cryptographic method protected against covert channel type attacks 有权
    密码方法防范隐蔽通道类型攻击

    公开(公告)号:US07742595B2

    公开(公告)日:2010-06-22

    申请号:US10509876

    申请日:2003-04-03

    IPC分类号: H04L9/28 H04K1/00

    摘要: The invention relates to a cryptographic method secured against a covert channel attack. According to the invention, in order to carry out a selected block of instructions as a function of an input variable amongst N predefined instruction blocks, a common block is carried out on the predefined N instruction blocks, a predefined number of times, the predefined number being associated with the selected instruction block.

    摘要翻译: 本发明涉及一种抵御隐蔽通道攻击的密码方法。 根据本发明,为了根据N个预定义指令块中的输入变量执行所选择的指令块,在预定义的N个指令块上执行公共块,预定义次数,预定义数量 与所选择的指令块相关联。

    Cryptographic method protected against covert channel type attacks
    7.
    发明申请
    Cryptographic method protected against covert channel type attacks 有权
    密码方法防范隐蔽通道类型攻击

    公开(公告)号:US20050163312A1

    公开(公告)日:2005-07-28

    申请号:US10509876

    申请日:2003-04-03

    IPC分类号: G06F7/72 G06F21/55 H04K1/00

    摘要: The invention relates to a cryptographic method secured against a covert channel attack. According to the invention, in order to carry out a selected block of instructions as a function of an input variable amongst N predefined instruction blocks, a common block is carried out on the predefined N instruction blocks, a predefined number of times, the predefined number being associated with the selected instruction block.

    摘要翻译: 本发明涉及一种抵御隐蔽通道攻击的密码方法。 根据本发明,为了根据N个预定义指令块中的输入变量执行所选择的指令块,在预定义的N个指令块上执行公共块,预定义次数,预定义数量 与所选择的指令块相关联。

    Exponentiation method resistant against side-channel and safe-error attacks
    8.
    发明授权
    Exponentiation method resistant against side-channel and safe-error attacks 有权
    指数方法抵御侧向通道和安全错误攻击

    公开(公告)号:US08744072B2

    公开(公告)日:2014-06-03

    申请号:US13138584

    申请日:2010-03-01

    申请人: Marc Joye

    发明人: Marc Joye

    摘要: An exponentiation method resistant against side-channel attacks and safe-error attacks. Input to the method is g in a multiplicatively written group G and a /-digit exponent d with a radix m>1 and output is z=gd-1·(d−1) is expressed as a series of (/−1) non-zero digits, d*0 . . . d*I-2, in the set {m−1, . . . , 2m−2} and an extra digit d*I-1 that is equal to dI-1−1, where dI-1 represents the most significant radix-m digit of d, and gd-1 is evaluated through a m-ary exponentiation algorithm on input g and (d−1) represented by d*0 . . . d*I-1. Also provided are an apparatus and a computer program product.

    摘要翻译: 一种抗侧向攻击和安全错误攻击的取幂方法。 该方法的输入为g,乘法编写的组G和a / -digit指数d,基数m> 1,输出为z = gd-1·(d-1)表示为一系列(/ -1) 非零数字,d * 0。 。 。 d * I-2,在集合{m-1,。 。 。 ,2m-2}和等于dI-1-1的额外数字d * I-1,其中dI-1表示d的最显着的rad-m数字,并且gd-1通过m-ar 由d * 0表示的输入g和(d-1)的求幂算法。 。 。 d * I-1。 还提供了一种装置和计算机程序产品。

    Method and a device for performing torus-based cryptography
    9.
    发明授权
    Method and a device for performing torus-based cryptography 失效
    方法和用于执行基于环面的密码学的设备

    公开(公告)号:US08548162B2

    公开(公告)日:2013-10-01

    申请号:US13377663

    申请日:2010-06-10

    申请人: Marc Joye

    发明人: Marc Joye

    IPC分类号: H04L9/00

    摘要: At CRYPTO 2003, Rubin and Silverberg introduced the concept of torus-based cryptography over a finite field. The present invention extends their setting to the ring of integers modulo N, thus obtaining compact representations for cryptographic systems that base their security on the discrete logarithm problem and the factoring problem. This can result in small key sizes and substantial savings in memory and bandwidth. However, unlike the case of finite field, analogous trace-based compression methods cannot be adapted to accommodate the extended setting of the invention when the underlying systems require more than a mere exponentiation. The invention finds particular application in a torus-based implementation of the ACJT group signature scheme. Also provided is a processor.

    摘要翻译: 在CRYPTO 2003年,Rubin和Silverberg在有限的领域上介绍了基于环面的加密技术的概念。 本发明将它们的设置扩展到模N的整数环,从而获得基于离散对数问题和保理问题的安全性的密码系统的紧凑表示。 这可能导致小的密钥大小,并显着节省内存和带宽。 然而,与有限域的情况不同,当底层系统需要的不仅仅是求幂时,类似的基于跟踪的压缩方法不能适应于适应本发明的扩展设置。 本发明在ACJT组签名方案的基于环面的实现中发现具体应用。 还提供了处理器。

    Method and apparatus for generating a signature for a message and method and apparatus for verifying such a signature
    10.
    发明授权
    Method and apparatus for generating a signature for a message and method and apparatus for verifying such a signature 有权
    用于生成用于消息的签名的方法和装置以及用于验证这样的签名的方法和装置

    公开(公告)号:US08223963B2

    公开(公告)日:2012-07-17

    申请号:US12737073

    申请日:2009-06-02

    申请人: Marc Joye

    发明人: Marc Joye

    IPC分类号: G06F21/00

    摘要: A method of generating a signature σ for a message m, the method enabling online/offline signatures. Two random primes p and q are generated, with N=pq; two random quadratic residues g and x are chosen in Z*N, and, for an integer z, h=g−z mod N is calculated. This gives the public key {g, h, x, N} and the private key {p, q, z}. Then, an integer t and a prime e are chosen. The offline signature part y may then be calculated as y=(xg−t)1/eb mod N where b is an integer bigger than 0, predetermined in the signature scheme. The online part k of the signature on message m is then calculated as k=t+mz and the signature σ on message m is generated as σ=(k, y, e) and returned. To verify the signature, it is checked that 1) e is an odd IE-bit integer, 2) k is an IK-bit integer, and 3) yebgkhm≡x(mod N). An advantage of the method is that it may be performed without hashing. Also provided are a signing device, a verification device, and computer program supports.

    摘要翻译: 生成签名和方法的方法 对于消息m,该方法启用在线/离线签名。 产生两个随机素数p和q,其中N = pq; 在Z * N中选择两个随机二次残差g和x,对于整数z,计算h = g-z mod N。 这给出公钥{g,h,x,N}和私钥{p,q,z}。 然后,选择整数t和素数e。 然后可以将离线签名部分y计算为y =(xg-t)1 / eb mod N,其中b是大于0的整数,在签名方案中是预定的。 然后,消息m上的签名的在线部分k被计算为k = t + mz和签名&sgr; on消息m生成为&sgr; =(k,y,e)并返回。 为了验证签名,检查1)e是奇数IE位整数,2)k是IK位整数,以及3)yebgkhm≡x(mod N)。 该方法的优点在于可以不进行散列来执行。 还提供了签名装置,验证装置和计算机程序支持。