MACHINE LEARNING BASED RESOURCE ALLOCATION OPTIMIZATION

    公开(公告)号:US20240104458A1

    公开(公告)日:2024-03-28

    申请号:US17955407

    申请日:2022-09-28

    CPC classification number: G06Q10/063116 G06N5/022 G06Q10/06393 G06Q30/0637

    Abstract: An online concierge system determines a quantity of a resource available in a timeslot to fulfill orders during the timeslot. The orders include immediate orders placed during the timeslot and scheduled orders that are scheduled for fulfillment during the timeslot. The online concierge system applies the quantity of the resource to a machine learning model to produce a predicted relationship between a value of a fulfillment metric and an allocation of the quantity of the resource reserved for immediate orders. The online concierge system determines, based on the predicted relationship, an expected optimal allocation of the quantity of the resource that maximizes the fulfillment metric. The online concierge system reserves the expected optimal allocation of the quantity of the resource for immediate orders.

    SELECTING METHODS TO ALLOCATE SHOPPERS FOR ORDER FULFILLMENT IN GEOGRAPHIC REGIONS BY AN ONLINE CONCIERGE SYSTEM BASED ON MACHINE-LEARNED EFFICIENCIES FOR DIFFERENT ALLOCATION METHODS

    公开(公告)号:US20230196442A1

    公开(公告)日:2023-06-22

    申请号:US17556936

    申请日:2021-12-20

    CPC classification number: G06Q30/0635

    Abstract: An online concierge system allocates shoppers to different geographic regions at different times to fulfill orders received from users. The online concierge system uses different methods for adjusting allocation of shoppers to geographic regions, such as obtaining new shoppers or providing incentives to additional shoppers, based on estimated numbers of orders identifying different geographic regions. To account for costs to the online concierge system for allocating shoppers to geographic regions, the online concierge system trains multiple machine learned models to predict different efficiency metrics for methods for adjusting shopper allocation. Discrete samples are obtained from each efficiency metric, and samples that do not satisfy one or more constraints removed. From the remaining samples, a combination of samples for different methods for adjusting shopper allocation is selected to optimize a value to the online concierge system based on one or more criteria.

Patent Agency Ranking