Abstract:
A method comprises measuring a light intensity at a window; determining if the light intensity exceeds a cloudy-day threshold; operating in a sunlight penetration limiting mode to control the motorized window treatment to control the sunlight penetration distance in the space; enabling the sunlight penetration limiting mode if the light intensity is greater than the cloudy-day threshold; and disabling the sunlight penetration limiting mode if the total lighting intensity is less than the cloudy-day threshold. The cloudy-day threshold is maintained at a constant threshold if a calculated solar elevation angle is greater than a predetermined solar elevation angle, and the cloudy-day threshold varies with time if the calculated solar elevation angle is less than the predetermined solar elevation angle. The cloudy-day threshold is a function of the calculated solar elevation angle if the calculated solar elevation angle is less than the predetermined solar elevation angle.
Abstract:
A method comprises measuring a light intensity at a window; determining if the light intensity exceeds a cloudy-day threshold; operating in a sunlight penetration limiting mode to control the motorized window treatment to control the sunlight penetration distance in the space; enabling the sunlight penetration limiting mode if the light intensity is greater than the cloudy-day threshold; and disabling the sunlight penetration limiting mode if the total lighting intensity is less than the cloudy-day threshold. The cloudy-day threshold is maintained at a constant threshold if a calculated solar elevation angle is greater than a predetermined solar elevation angle, and the cloudy-day threshold varies with time if the calculated solar elevation angle is less than the predetermined solar elevation angle. The cloudy-day threshold is a function of the calculated solar elevation angle if the calculated solar elevation angle is less than the predetermined solar elevation angle.
Abstract:
A load control system automatically controls the amount of daylight entering a building through at least one window of a non-linear façade of the building. The load control system comprises at least two motorized window treatments located along the non-linear façade, and a system controller. The controller is configured to calculate an optimal position for the motorized window treatments at each of a plurality of different times during a subsequent time interval using at least two distinct façade angles of the non-linear façade, such that a sunlight penetration distance will not exceed a maximum distance during the time interval. The controller is configured to use the optimal positions to determine a controlled position to which both of the motorized window treatments will be controlled during the time interval and to automatically adjust each of the motorized window treatments to the controlled position at the beginning of the time interval.
Abstract:
A load control system automatically controls the amount of daylight entering a building through at least one window of a non-linear façade of the building. The load control system comprises at least two motorized window treatments located along the non-linear façade, and a system controller. The controller is configured to calculate an optimal position for the motorized window treatments at each of a plurality of different times during a subsequent time interval using at least two distinct façade angles of the non-linear façade, such that a sunlight penetration distance will not exceed a maximum distance during the time interval. The controller is configured to use the optimal positions to determine a controlled position to which both of the motorized window treatments will be controlled during the time interval and to automatically adjust each of the motorized window treatments to the controlled position at the beginning of the time interval.
Abstract:
A load control system automatically controls the amount of daylight entering a building through at least one window of a non-linear façade of the building. The load control system comprises at least two motorized window treatments located along the non-linear façade, and a system controller. The controller is configured to calculate an optimal position for the motorized window treatments at each of a plurality of different times during a subsequent time interval using at least two distinct façade angles of the non-linear façade, such that a sunlight penetration distance will not exceed a maximum distance during the time interval. The controller is configured to use the optimal positions to determine a controlled position to which both of the motorized window treatments will be controlled during the time interval and to automatically adjust each of the motorized window treatments to the controlled position at the beginning of the time interval.
Abstract:
A motorized window treatment system controls a plurality of motorized window treatments to maximize daylight autonomy, while minimizing cognitive dissonance. The system may include motorized window treatments, window sensors, and a system controller. Each motorized window treatment may be operable to adjust a respective covering material to control the amount of light entering a space. Each sensor may be mounted adjacent to at least one of the motorized window treatments, and may be configured to measure an amount of daylight shining on the sensor. The system controller may receive sensor readings from the sensors and may control the motorized window treatments in response to the sensors to keep the covering materials aligned when the sensor readings are within a predetermined amount. The system controller may dynamically group and re-group the sensors into subgroups based upon the sensor readings and may control the motorized window treatments based upon the subgroups.
Abstract:
A load control system may comprise load control devices for controlling respective electrical loads, and a system controller operable to transmit digital messages including different commands to the load control devices in response to a selection of a preset. The different commands may include a preset command configured to identify preset data in a device database stored at the load control device and/or a multi-output command configured to define the preset data for being stored in the device database. The system controller may decide which of the commands to transmit to the load control devices in response to the selection of the preset.
Abstract:
A load control system automatically controls the amount of daylight entering a building through at least one window of a non-linear façade of the building. The load control system comprises at least two motorized window treatments located along the non-linear façade, and a system controller. The controller is configured to calculate an optimal position for the motorized window treatments at each of a plurality of different times during a subsequent time interval using at least two distinct façade angles of the non-linear façade, such that a sunlight penetration distance will not exceed a maximum distance during the time interval. The controller is configured to use the optimal positions to determine a controlled position to which both of the motorized window treatments will be controlled during the time interval and to automatically adjust each of the motorized window treatments to the controlled position at the beginning of the time interval.
Abstract:
A load control system may comprise load control devices for controlling respective electrical loads, and a system controller operable to transmit digital messages including different commands to the load control devices in response to a selection of a preset. The different commands may include a preset command configured to identify preset data in a device database stored at the load control device and/or a multi-output command configured to define the preset data for being stored in the device database. The system controller may decide which of the commands to transmit to the load control devices in response to the selection of the preset.
Abstract:
A motorized window treatment system controls a plurality of motorized window treatments to maximize daylight autonomy, while minimizing cognitive dissonance. The system may include motorized window treatments, window sensors, and a system controller. Each motorized window treatment may be operable to adjust a respective covering material to control the amount of light entering a space. Each sensor may be mounted adjacent to at least one of the motorized window treatments, and may be configured to measure an amount of daylight shining on the sensor. The system controller may receive sensor readings from the sensors and may control the motorized window treatments in response to the sensors to keep the covering materials aligned when the sensor readings are within a predetermined amount. The system controller may dynamically group and re-group the sensors into subgroups based upon the sensor readings and may control the motorized window treatments based upon the subgroups.