Abstract:
A load control device is configured to generate a control signal having a desired magnitude for controlling a load regulation device adapted to control the power delivered to an electrical load. The load control device may comprise a control terminal arranged to provide the control signal to the load regulation device, a communication circuit for generating the control signal, and a control circuit configured to generate an output signal that is provided to the communication circuit. The communication circuit may be characterized by non-linear operation. The control circuit may adjust the magnitude of the output signal in response to the difference between the magnitude of the control signal and the desired magnitude to adjust the magnitude of the control signal towards the desired magnitude. The control circuit may also be configured to determine if an incompatible load regulation device is coupled to the load control device.
Abstract:
A load control device adapted to be coupled between an AC power source and an electrical load for controlling the power delivered to the load includes a controller, an actuator for turning the electrical load on and off, an occupancy detection circuit, and an ambient light detector. The load control device automatically turns on the electrical load in response to the presence of an occupant only if the detected ambient light is below a predetermined ambient light level threshold. After first detecting the presence of an occupant, the load control device monitors actuations of the actuator to determine whether a user has changed the state of the load. The load control device automatically adjusts the predetermined ambient light level threshold in response to the user actuations that change the state of the load.
Abstract:
A load control device for controlling the amount of power delivered from an AC power source to an electrical load is operable to conduct enough current through a thyristor of a connected dimmer switch to exceed rated latching and holding currents of the thyristor. The load control device comprises a controllable-load circuit operable to conduct a controllable-load current through the thyristor of the dimmer switch. The load control device disables the controllable-load circuit when the phase-control voltage received from the dimmer switch is a reverse phase-control waveform. When the phase-control voltage received from the dimmer switch is a forward phase-control waveform, the load control device is operable to decrease the magnitude of the controllable-load current so as to conduct only enough current as is required in order to exceed rated latching and holding currents of the thyristor.
Abstract:
A load control device is configured to generate a control signal having a desired magnitude for controlling a load regulation device adapted to control the power delivered to an electrical load. The load control device may comprise a control terminal arranged to provide the control signal to the load regulation device, a communication circuit for generating the control signal, and a control circuit configured to generate an output signal that is provided to the communication circuit. The communication circuit may be characterized by non-linear operation. The control circuit may adjust the magnitude of the output signal in response to the difference between the magnitude of the control signal and the desired magnitude to adjust the magnitude of the control signal towards the desired magnitude. The control circuit may also be configured to determine if an incompatible load regulation device is coupled to the load control device.
Abstract:
A load control device is configured to generate a control signal having a desired magnitude for controlling a load regulation device adapted to control the power delivered to an electrical load. The load control device may comprise a control terminal arranged to provide the control signal to the load regulation device, a communication circuit for generating the control signal, and a control circuit configured to generate an output signal that is provided to the communication circuit. The communication circuit may be characterized by non-linear operation. The control circuit may adjust the magnitude of the output signal in response to the difference between the magnitude of the control signal and the desired magnitude to adjust the magnitude of the control signal towards the desired magnitude. The control circuit may also be configured to determine if an incompatible load regulation device is coupled to the load control device.
Abstract:
A load control device for controlling the amount of power delivered from an AC power source to an electrical load is operable to conduct enough current through a thyristor of a connected dimmer switch to exceed rated latching and holding currents of the thyristor. The load control device comprises a controllable-load circuit operable to conduct a controllable-load current through the thyristor of the dimmer switch. The load control device disables the controllable-load circuit when the phase-control voltage received from the dimmer switch is a reverse phase-control waveform. When the phase-control voltage received from the dimmer switch is a forward phase-control waveform, the load control device is operable to decrease the magnitude of the controllable-load current so as to conduct only enough current as is required in order to exceed rated latching and holding currents of the thyristor.
Abstract:
A load control device for controlling the amount of power delivered from an AC power source to an electrical load is operable to conduct enough current through a thyristor of a connected dimmer switch to exceed rated latching and holding currents of the thyristor. The load control device comprises a controllable-load circuit operable to conduct a controllable-load current through the thyristor of the dimmer switch. The load control device disables the controllable-load circuit when the phase-control voltage received from the dimmer switch is a reverse phase-control waveform. When the phase-control voltage received from the dimmer switch is a forward phase-control waveform, the load control device is operable to decrease the magnitude of the controllable-load current so as to conduct only enough current as is required in order to exceed rated latching and holding currents of the thyristor.
Abstract:
A load control device is able to receive radio-frequency (RF) signals from a Wi-Fi-enabled device, such as a smart phone, via a wireless local area network. The load control device comprises a controllably conductive device adapted to be coupled in series between an AC power source and an electrical load, a controller for rendering the controllably conductive device conductive and non-conductive, and a Wi-Fi module operable to receive the RF signals from the wireless network. The controller controls the controllably conductive device to adjust the power delivered to the load in response to the wireless signals received from the wireless network. The load control device may further comprise an optical module operable to receive an optical signal, such that the controller may obtain an IP address from the received optical signal and control the power delivered to the load in response to a wireless signal that includes the IP address.
Abstract:
A load control device adapted to be coupled between an AC power source and an electrical load for controlling the power delivered to the load includes a controller, an actuator for turning the electrical load on and off, an occupancy detection circuit, and an ambient light detector. The load control device automatically turns on the electrical load in response to the presence of an occupant only if the detected ambient light is below a predetermined ambient light level threshold. After first detecting the presence of an occupant, the load control device monitors actuations of the actuator to determine whether a user has changed the state of the load. The load control device automatically adjusts the predetermined ambient light level threshold in response to the user actuations that change the state of the load.