Abstract:
Systems and methods are disclosed herein for determining rotation. A gyroscope includes a drive frame and a base, the drive frame springedly coupled to the base. The gyroscope includes a drive structure configured for causing a drive frame to oscillate along a first axis. The gyroscope includes a sense mass springedly coupled to the drive frame. The gyroscope includes a sense mass sense structure configured for measuring a displacement of the sense mass along a second axis orthogonal to the first axis. The gyroscope includes measurement circuitry configured for determining a velocity of the drive frame, extracting a Coriolis component from the measured displacement, and determining, based on the determined velocity and extracted Coriolis component, a rotation rate of the gyroscope.
Abstract:
Systems and methods are disclosed herein for determining rotation. A gyroscope includes a drive frame and a base, the drive frame springedly coupled to the base. The gyroscope includes a drive structure configured for causing a drive frame to oscillate along a first axis. The gyroscope includes a sense mass springedly coupled to the drive frame. The gyroscope includes a sense mass sense structure configured for measuring a displacement of the sense mass along a second axis orthogonal to the first axis. The gyroscope includes measurement circuitry configured for determining a velocity of the drive frame, extracting a Coriolis component from the measured displacement, and determining, based on the determined velocity and extracted Coriolis component, a rotation rate of the gyroscope.