摘要:
The method of the present invention relates to providing controlled directional bores in subterranean earth formations, especially coal beds for facilitating in situ gasification operations. Boreholes penetrating the coal beds are interconnected by laser-drilled bores disposed in various arrays at selected angles to the major permeability direction in the coal bed. These laser-drilled bores are enlarged by fracturing prior to the gasification of the coal bed to facilitate the establishing of combustion zones of selected configurations in the coal bed for maximizing the efficiency of the gasification operation.
摘要:
Subterranean earth formations containing energy values are subjected to hydraulic fracturing procedures to enhance the recovery of the energy values. These fractures are induced in the earth formation by pumping liquid into the wellbore penetrating the earth formation until the pressure of the liquid is sufficient to fracture the earth formation adjacent to the wellbore. The present invention is directed to a transducer which is positionable within the wellbore to generate a signal indicative of the fracture initiation useful for providing a timing signal to equipment for seismic mapping of the fracture as it occurs and for providing a measurement of the pressure at which the fracture is initiated.
摘要:
This invention relates to an improved in situ combustion method for the recovery of hydrocarbons from subterranean earth formations containing carbonaceous material. The method is practiced by penetrating the subterranean earth formation with a borehole projecting into the coal bed along a horizontal plane and extending along a plane disposed perpendicular to the plane of maximum permeability. The subterranean earth formation is also penetrated with a plurality of spaced-apart vertical boreholes disposed along a plane spaced from and generally parallel to that of the horizontal borehole. Fractures are then induced at each of the vertical boreholes which project from the vertical boreholes along the plane of maximum permeability and intersect the horizontal borehole. The combustion is initiated at the horizontal borehole and the products of combustion and fluids displaced from the earth formation by the combustion are removed from the subterranean earth formation via the vertical boreholes. Each of the vertical boreholes are, in turn, provided with suitable flow controls for regulating the flow of fluid from the combustion zone and the earth formation so as to control the configuration and rate of propagation of the combustion zone. The fractures provide a positive communication with the combustion zone so as to facilitate the removal of the products resulting from the combustion of the carbonaceous material.
摘要:
The present invention relates to the production of relatively high Btu gas by the in situ combustion of subterranean coal. The coal bed is penetrated with a horizontally-extending borehole and combustion is initiated in the coal bed contiguous to the borehole. The absolute pressure within the resulting combustion zone is then regulated at a desired value near the pore pressure within the coal bed so that selected quantities of water naturally present in the coal will flow into the combustion zone to effect a hydrogen and carbon monoxide-producing steam-carbon reaction with the hot carbon in the combustion zone for increasing the calorific value of the product gas.
摘要:
The present invention is directed to a method for remotely mapping subterranean coal beds prior to and during in situ gasification operations. This method is achieved by emplacing highly directional electromagnetic wave transmitters and receivers in bore holes penetrating the coal beds and then mapping the anomalies surrounding each bore hole by selectively rotating and vertically displacing the directional transmitter in a transmitting mode within the bore hole, and thereafter, initiating the gasification of the coal at bore holes separate from those containing the transmitters and receivers and then utilizing the latter for monitoring the burn front as it progresses toward the transmitters and receivers.
摘要:
The present invention is directed to a wireless fracture-mapping tool utilized for determining fracture directional and length characteristics of hydraulically induced fractures in subterranean earth formations containing recoverable energy values. The apparatus of the present invention utilizes antenna packages from which a transmitting antenna is propelled from a wellbore penetrating the earth formation into the fracture system. Signal-receiving antennas disposed on opposite sides of the transmitting antenna are likewise propelled into the fracture system for receiving signals from the transmitting antenna that are indicative of the fracture orientation and length. With the present invention the axial and singular three-dimensional location of the fracture or other fracture profiles may be readily mapped. This fracture-mapping system of the present invention aids in the recovery of the energy values from the subterranean earth formation by facilitating the strategic emplacement of wellbores to more efficiently recover the energy values in the subterranean earth formations.
摘要:
The invention is directed to a device which is used for determining permeability characteristics of earth formations at the surface thereof. The determination of the maximum permeability direction and the magnitude of permeability are achieved by employing a device comprising a housing having a central fluid-injection port surrounded by a plurality of spaced-apart fluid flow and pressure monitoring ports radially extending from the central injection port. With the housing resting on the earth formation in a relatively fluid-tight manner as provided by an elastomeric pad disposed therebetween, fluid is injected through the central port into the earth formation and into registry with the fluid-monitoring ports disposed about the injection port. The fluid-monitoring ports are selectively opened and the flow of the fluid through the various fluid ports is measured so as to provide a measurement of flow rates and pressure distribution about the center hole which is indicative on the earth formation permeability direction and magnitude. For example, the azimuthal direction of the fluid-monitoring ports in the direction through which the greatest amount of injected fluid flows as determined by the lowest pressure distribution corresponds to the direction of maximum permeability in the earth formation.
摘要:
Directional permeability measurements are provided in a subterranean earth formation by injecting a high-pressure gas from a wellbore into the earth formation in various azimuthal directions with the direction having the largest pressure drop being indicative of the maximum permeability direction. These measurements are provided by employing an inflatable boot containing a plurality of conduits in registry with a like plurality of apertures penetrating the housing at circumferentially spaced-apart locations. These conduits are, in turn, coupled through a valved manifold to a source of pressurized gas so that the high-pressure gas may be selectively directed through any conduit into the earth formation defining the bore with the resulting difference in the pressure drop through the various conduits providing the permeability measurements.
摘要:
The present invention is directed to an apparatus for installing strain gages or other sensors-transducers in wellbores penetrating subterranean earth formations. The subject apparatus comprises an assembly which is lowered into the wellbore, secured in place, and then actuated to sequentially clean the wellbore or casing surface at a selected location with suitable solvents, etchants and neutralizers, grind the surface to a relatively smooth finish, apply an adhesive to the surface, and attach the strain gages or the like to the adhesive-bearing surface. After installing the condition-sensing gages to the casing or earth formation the assembly is withdrawn from the wellbore leaving the sensing gages securely attached to the casing or the subterranean earth formation.
摘要:
The configuration and directional orientation of natural or induced fractures in subterranean earth formations are described by introducing a liquid explosive into the fracture, detonating the explosive, and then monitoring the resulting acoustic emissions with strategically placed acoustic sensors as the explosion propagates through the fracture at a known rate.