Abstract:
A system and method in which information relevant to a Photovoltaic (PV) solar-site specific activity environment is displayed on the display screen of an Augmented Reality (AR) device as part of the surrounding environment, instead of on a separate computing device or an installation manual. The activity environment includes PV solar site-specific survey and feasibility analysis, installation and commissioning, Operation and Maintenance (O&M), and site overhaul/removal activities. Thus, relevant information is available to an installer/technician at their fingertips so that the installer/technician can continue the task they are involved in without losing focus. The AR device may record relevant data during site survey and note important points, accelerate installation and commissioning, make O&M more efficient, and record the complete process for ongoing improvement/management of the site. Moreover, company-specific best practices may be loaded on the AR device as guidelines to make the process uniform across the entire fleet of installers.
Abstract:
A system and method in which information relevant to a Photovoltaic (PV) solar-site specific activity environment is displayed on the display screen of an Augmented Reality (AR) device as part of the surrounding environment, instead of on a separate computing device or an installation manual. The activity environment includes PV solar site-specific survey and feasibility analysis, installation and commissioning, Operation and Maintenance (O&M), and site overhaul/removal activities. Thus, relevant information is available to an installer/technician at their fingertips so that the installer/technician can continue the task they are involved in without losing focus. The AR device may record relevant data during site survey and note important points, accelerate installation and commissioning, make O&M more efficient, and record the complete process for ongoing improvement/management of the site. Moreover, company-specific best practices may be loaded on the AR device as guidelines to make the process uniform across the entire fleet of installers.
Abstract:
A computer implemented method of estimating solar irradiance, the method comprising: constructing a reference irradiance set of tuples; constructing a reference predictor set of tuples, merging the reference irradiance set of tuples and the reference predictor set of tuples by matching numerical identifiers for a location for which a global horizontal irradiance exists in the reference irradiance set of tuples and the timestamp with the numerical identifier for a particular location in the reference predictor set of tuples and the timestamp to provide a reference data set of tuples; and estimating the global horizontal irradiance for a specific location and a timestamp by minimizing the least squares error between the reference predictor set of tuples and the reference irradiance set of tuples to provide a set of estimated global horizontal irradiance values for a specific location and timestamp.
Abstract:
The present invention relates to methods and systems for identifying PV system and solar irradiance sensor orientation and tilt based on energy production, energy received, simulated energy production, estimated energy received, production skew, and energy received skew. The present invention relates to systems and methods for detecting orientation and tilt of a PV system based on energy production and simulated energy production; for detecting the orientation and tilt of a solar irradiance sensor based on solar irradiance observation and simulated solar irradiance observation; for detecting orientation of a PV system based on energy production and energy production skew; and for detecting orientation of a solar irradiance sensor based on solar irradiance observation and solar irradiance observation skew.
Abstract:
An interconnect box between a utility meter and a main service panel having at least two grid electrical inputs from the utility meter; at least one grid neutral input from the utility meter, wherein the grid electrical inputs and the grid neutral inputs are combined to provide a combined grid stream; at least two external electrical inputs having circuit breakers for each of the at least two electrical inputs; at least one external neutral input; at least one shorting block used to merge together two of the at least two external electrical inputs and one of the at least one external neutral inputs to provide an external merged stream; a central computing unit receives and utilizes power from at least one of the combined grid stream and the external merged stream to generate power and source voltage on energy metering.
Abstract:
A system and method in which production measurement for renewable energy is obtained in a storage-independent manner. Energy storage is separated out from the renewable generation to provide individual performance analytics. A monitoring unit uses device communication and metering to enable revenue-grade production measurement for renewable source and energy storage periodically at specified time intervals. The production measurement for the renewable source is obtained in a form that would be comparable to renewable installations without storage, for accurate billing, maintenance, and performance analytics. Additionally, multiple energy flows may be used by the monitoring unit to arrive at a storage efficiency value that can be attributed to the storage unit and how the storage unit is operated in the renewable energy system. The storage efficiency quantifies efficiency losses arising from the use of a storage unit to estimate the actual impact of storage and the charge controller algorithm on energy production.
Abstract:
A method of identifying the location of a renewable energy system; providing a location-unknown renewable energy system having production data; filtering production data day by day for favorable weather conditions to provide filtered production data for each filtered day; identifying and saving the start of production, peak of production and end of production for each filtered day; calculating solar noon for each filtered day; calculating longitude bias for each filtered day according to an equation of time and the peak of production; calculating skew of production according to the start of production, peak of production and end of production for each filtered day; calculating longitude for one location-unknown renewable energy system according to the longitude bias and skew of production for each filtered day; setting longitude for location-unknown renewable energy system to become a location-known renewable energy system that becomes part of a set of location-known renewable energy systems.
Abstract:
The present invention provides methods and systems to estimate energy losses due to partial equipment failure in photovoltaic (PV) systems based on measured power and energy data, weather data, PV system configuration information, and modeled power and energy generation data.
Abstract:
The present invention provides methods and systems to estimate energy losses due to shading in PV systems from data including the measured energy and power produced over the lifetime of the system, the system size and configuration data, the weather conditions (including irradiance, ambient & panel temperature, and wind conditions) over the lifetime of the system, and derived meteorological condition information (e.g., decomposed irradiance values at any time).
Abstract:
The present invention relates to methods and systems for identifying PV system and solar irradiance sensor orientation and tilt based on energy production, energy received, simulated energy production, estimated energy received, production skew, and energy received skew. The present invention relates to systems and methods for detecting orientation and tilt of a PV system based on energy production and simulated energy production; for detecting the orientation and tilt of a solar irradiance sensor based on solar irradiance observation and simulated solar irradiance observation; for detecting orientation of a PV system based on energy production and energy production skew; and for detecting orientation of a solar irradiance sensor based on solar irradiance observation and solar irradiance observation skew.