Abstract:
The present invention relates to a method of displaying an artwork, comprising the steps of: i) providing an artwork comprising an image, real or virtual; ii) dividing and separating the image into a plurality of segments; iii) arranging the plurality of segments in parallel planes, while keeping the segments oriented in their respective original positions within the image; iv) viewing the plurality of segments from one or more viewpoints; and v) changing the viewpoint to a predetermined angle such that the segments reveal a complete image with a surprising perception of depth.
Abstract:
A completely portable, rugged camera for providing in real time, visual light images of extended objects emitting low energy X-ray and gamma-ray photons. Collimated radiation eminating from extended objects such as internal anatomical organ structures which have absorbed low dosages of radio-active isotopes, are filtered through a visible light shield, converted into visible light photons, and, alternatively magnified or demagnified while spatial orientation is maintained. The visible light photons are subsequently intensified, in one or more cascaded stages, through conversions into electrons, multiplied through micro-channel plate electron multipliers, and reconverted by a phosphor screen to visible light and provide a high spatial resolution visual light image either directly to a viewer or to a device such as an image recorder.
Abstract:
An instrument for obtaining quantitative, three-dimensional and tomographic information relating to x-ray and gamma-ray emitting objects and for the orthoscopic viewing of such objects includes a multiple-pinhole aperture plate (22) held spaced from an x-ray or gamma-ray to visible-light converter (24) which is coupled to a visible-light image intensifier (26). The spacing between the aperture plate and the converter is chosen such that the mini-images of an emitting object formed by the pinholes do not substantially overlap as they impinge on the converter. The output of the image intensifier is digitized by a digitizing camera (36) in terms of position and intensity and fed into a digital computer (40,42). The computer may output quantitative information relating to the emitting object directly, such as that relating to tomograms, or provide information in analogue form when coupled with a suitable viewing device (52,54), to give an orthoscopic, three-dimensional image of the object.
Abstract:
A low intensity X-ray and gamma-ray spectrometer 10 is disclosed for imaging, counting, and energy resolving of single invisible radiation particles. Spectrometer 10 includes a converting device 20 for converting single invisible radiation particles to visible light photons. Another converting device 24 converts the visible light photons to photoelectrons. A fiber optics coupling device 22 couples together converting devices 20 and 24. An intensifying device 26 intensifies the photoelectrons by an average gain factor of substantially 10.sup.4 -10.sup.7. Intensifying device 26 is an anti-ion feedback microchannel plate amplifier which is operated substantially below saturation. A displaying device 32 displays the intensified photoelectrons. Displaying device 32 indicates the spatial position, number, and energy of the incoming single invisible radiation particles.
Abstract:
A multi-pinhole aperture lead screen (22) forms an equal plurality of invisible mini-images having dissimilar perspectives of an x-ray and gamma-ray emitting object (ABC) onto a rear-earth phosphor layer (24) which, in turn, provides visible light mini-images directly into a visbile light image intensifier (26). A viewing screen (34/48) having an equal plurality of dissimilar perspective apertures distributed across its face in a geometric pattern identical to the lead screen, provides a viewer with a real, pseudoscopic image (A'B'C') of the object with full horizontal and vertical parallax. Alternatively, a third screen (34) identical to the viewing screen (48) and spaced apart from a second visible light image intensifier (42), may be positioned between the first image intensifier (26) and the viewing screen (48), thereby providing the viewer with a virtual, orthoscopic image (A"B"C") of the object (ABC) with full horizontal and vertical parallax.