Abstract:
A component of a plasma processing chamber is provided. A yttria coating is formed on a surface of a component body, wherein the yttria coating is deposited by aerosol deposition and is annealed, wherein the yttria coating is at least 95% pure yttria by weight.
Abstract:
A method for conditioning a component of a wafer processing chamber is provided. The component is placed in an ultrasonic conditioning solution in an ultrasonic solution tank. Ultrasonic energy is applied through the ultrasonic conditioning solution to the component to clean the component. The component is submerged in a megasonic conditioning solution in a tank. Megasonic energy is applied through the megasonic conditioning solution to the component to clean the component.
Abstract:
A method for providing a part with a plasma resistant ceramic coating for use in a plasma processing chamber is provided. A patterned mask is placed on the part. A film is deposited over the part. The patterned mask is removed. A plasma resistant ceramic coating is applied on the part.
Abstract:
An apparatus adapted for use in a plasma processing chamber is provided. An aluminum body with at least one surface is provided. An aluminum oxide containing aerosol deposition coating is disposed over the at least one surface of the aluminum body. An yttrium containing aerosol deposition coating is disposed over the aluminum oxide containing aerosol deposition coating.
Abstract:
A method for conditioning a component of a wafer processing chamber is provided. The component is placed in an ultrasonic conditioning solution in an ultrasonic solution tank. Ultrasonic energy is applied through the ultrasonic conditioning solution to the component to clean the component. The component is submerged in a megasonic conditioning solution in a tank. Megasonic energy is applied through the megasonic conditioning solution to the component to clean the component.
Abstract:
A fluid handling component for a vacuum chamber of a semiconductor substrate processing apparatus is provided. The fluid handling component comprises interior fluid wetted surfaces and an atomic layer deposition (ALD) or molecular layer deposition (MLD) barrier coating on the interior fluid wetted surfaces wherein the fluid wetted surfaces which include the ALD or MLD barrier coating are configured to be contacted by a process gas and/or fluid during a semiconductor substrate processing process wherein the ALD or MLD barrier coating protects the underlying fluid wetted surfaces from erosion and/or corrosion.
Abstract:
In accordance with this disclosure, there are provided several inventions, including an apparatus and method for brazing at least two aluminum or aluminum alloy components and providing an anodized coating, and an atomic layer deposition coating for adding plasma corrosion resistance.
Abstract:
Sealing various machined component parts used in plasma etching chambers using an Atomic Layer Deposition (ALD) coating. By sealing the component parts with the ALD layer, surface erosion/etch caused by repeated exposure to plasma during workpiece fabrication is eliminated or significantly mitigated. As a result, unwanted particle generation, caused by erosion, is eliminated or significantly reduced, preventing contamination within the plasma etching chamber.
Abstract:
A component of a plasma processing chamber having at least one plasma facing surface of the component comprises single crystal metal oxide material. The component can be machined from a single crystal metal oxide ingot. Suitable single crystal metal oxides include spinel, yttrium oxide, and yttrium aluminum garnet (YAG). A single crystal metal oxide can be machined to form a gas injector of a plasma processing chamber.
Abstract:
An apparatus for measuring contaminants on a surface of a component is provided. An extraction vessel for holding a measurement fluid has an opening adapted to form a meniscus using the measurement fluid. An actuator moves at least one of the extraction vessel and the component to a position where the meniscus is in contact with the surface of the component. A transducer is positioned to provide acoustic energy to the measurement fluid.