Abstract:
The present invention relates to a method for cutting a separation membrane for a battery, in which the separation membrane is cut by laser radiation on the separation membrane, wherein the pulse repetition rate of the laser is 10 to 500 kHz; a separation membrane manufactured by the method; and a battery comprising the separation membrane. The present invention, in contrast with physical cutting, has the advantage of being capable of cutting a separation membrane for a battery so as to have a uniform cut surface, which was impossible by conventional physical cutting methods.
Abstract:
The present invention relates to an electrode manufacturing method, an electrode manufactured thereby, and a battery comprising the same, the electrode manufacturing method comprising the steps of: applying an electrode active material onto a collector; and radiating a laser such that the end of an electrode active material layer, which has been obtained by applying the electrode active material, becomes straight, thereby removing the electrode active material.The present invention is advantageous in that the difference in area between active materials applied to the positive and negative electrodes, respectively, is minimized, thereby increasing the capacity and improving the stability of the battery.
Abstract:
Disclosed is a separator for an electrochemical device. The separator includes a non-woven web substrate, wherein at least one surface of the non-woven web substrate includes an electrode reactive layer formed by carbonization of the non-woven web substrate from the surface of the non-woven web substrate to a predetermined depth, and the electrode reactive layer is disposed at the outermost side of at least one surface of both surfaces of the separator.
Abstract:
The present invention relates to a method for cutting a separation membrane for a battery, in which the separation membrane is cut by laser radiation on the separation membrane, wherein the pulse repetition rate of the laser is 10 to 500 kHz; a separation membrane manufactured by the method; and a battery comprising the separation membrane. The present invention, in contrast with physical cutting, has the advantage of being capable of cutting a separation membrane for a battery so as to have a uniform cut surface, which was impossible by conventional physical cutting methods.
Abstract:
A method for manufacturing a glass cliché using laser etching includes a dipping step for dipping a glass cliché, which will be etched, into an etching solution, a patterning step for irradiating laser to the glass cliché dipped in the etching solution to form a pattern therein, and a washing step for washing the patterned glass cliché. This method allows making a cliché with a high aspect ratio and fine line widths in comparison to a conventional cliché manufacturing method using photoresist for etching, and also ensures more efficient energy consumption and higher etching efficiency rather than an etching method using laser only.
Abstract:
There is provided a superhydrophobic substrate comprising a plurality of protrusions having a pseudo random distribution on one surface thereof, an average interval between respective protrusions among the plurality of protrusions being greater than an interval between light beam wave peaks of light within the visible spectrum, allowing the substrate to have durability and transparency secured therein.