摘要:
Provided is a solid electrolyte made of yttrium-doped barium zirconate having hydrogen ion conductivity, a doped amount of yttrium being 15 mol % to 20 mol %, and a rate of increase in lattice constant at 100° C. to 1000° C. with respect to temperature changes being substantially constant. Also provided is a method for manufacturing the solid electrolyte. This solid electrolyte can be formed as a thin film, and a solid electrolyte laminate can be obtained by laminating electrode layers on this solid electrolyte. This solid electrolyte can be applied to an intermediate temperature operating fuel cell.
摘要:
Provided is a solid electrolyte made of yttrium-doped barium zirconate having hydrogen ion conductivity, a doped amount of yttrium being 15 mol % to 20 mol %, and a rate of increase in lattice constant at 100° C. to 1000° C. with respect to temperature changes being substantially constant. Also provided is a method for manufacturing the solid electrolyte. This solid electrolyte can be formed as a thin film, and a solid electrolyte laminate can be obtained by laminating electrode layers on this solid electrolyte. This solid electrolyte can be applied to an intermediate temperature operating fuel cell.
摘要:
A proton conductor contains a metal oxide that has a perovskite structure and that is represented by formula (1): AxB1-yMyO3-δ, where an element A is at least one element selected from the group consisting of Ba, Ca, and Sr, an element B is at least one element selected from the group consisting of Ce and Zr, an element M is at least one element selected from the group consisting of Y, Yb, Er, Ho, Tm, Gd, In, and Sc, δ indicates an oxygen deficiency amount, and 0.95≤x≤1 and 0
摘要:
A method for producing a cell structure includes: a step of firing a laminated body of a layer containing an anode material and a layer containing a solid electrolyte material, to obtain a joined body of an anode and a solid electrolyte layer; a step of laminating a layer containing a cathode material on a surface of the solid electrolyte layer, and firing the obtained laminated body to obtain a cathode. The anode material contains a metal oxide Ma1 and a nickel compound. The metal oxide Ma1 is a metal oxide having a perovskite structure represented by A1x1B11-y1M1y1O3-δ (wherein: A1 is at least one of Ba, Ca, and Sr; B1 is at least one of Ce and Zr; M1 is at least one of Y, Yb, Er, Ho, Tm, Gd, In, and Sc; 0.85≤x1≤0.99; 0
摘要:
Provided is a solid electrolyte laminate comprising a solid electrolyte layer having proton conductivity and a cathode electrode layer laminated on one side of the solid electrolyte layer and made of lanthanum strontium cobalt oxide (LSC). Also provided is a method for manufacturing the solid electrolyte. This solid electrolyte laminate can further comprise an anode electrode layer made of nickel-yttrium doped barium zirconate (Ni—BZY). This solid electrolyte laminate is suitable for a fuel cell operating in an intermediate temperature range less than or equal to 600° C.
摘要:
Provided is a solid electrolyte laminate comprising a solid electrolyte layer having proton conductivity and a cathode electrode layer laminated on one side of the solid electrolyte layer and made of lanthanum strontium cobalt oxide (LSC). Also provided is a method for manufacturing the solid electrolyte. This solid electrolyte laminate can further comprise an anode electrode layer made of nickel-yttrium doped barium zirconate (Ni—BZY). This solid electrolyte laminate is suitable for a fuel cell operating in an intermediate temperature range less than or equal to 600° C.
摘要:
An object of the present invention is to provide an inexpensive and highly safe compound useful as a chemical heat storage material that ensures high reproducibility even in repeated reactions (having high repetition durability), and is capable of reversibly advancing heat storage and heat dissipation even in a relatively low temperature range. The present invention is a hydrate of a rare earth metal sulfate having characteristic peaks at specific diffraction angles (2θ) in an X-ray diffraction pattern, which is measured using a copper radioactive ray of λ=1.5418 Å passed through a monochromator.
摘要:
A titanium foil or a titanium sheet is produced by electrodeposition from molten salt using constant current pulse, the method comprising: forming an electrodeposited titanium film on a surface of a cathode electrode made of glassy carbon, graphite, Mo, and Ni, and separating thereafter the electrodeposited titanium film from the cathode electrode by performing one or both of applying an external force to the electrodeposited titanium film and removing the cathode electrode. This enables the electrodeposited titanium film electrodeposited on the cathode electrode to be peeled from the cathode electrode simply and at low cost.