Abstract:
A multiple oscillation-type generator includes: a first reciprocating member arranged inside a fluid and configured to reciprocate by lifting force, lowering force, or flow energy resulting from the fluid; a second reciprocating member arranged inside the fluid at a distance from the first reciprocating member and configured to reciprocate by lifting force, lowering force, or flow energy resulting from the fluid; a first conversion unit connected to the first reciprocating member and configured to convert reciprocating movements into rotational movements; a second conversion unit connected to the second reciprocating member and configured to convert reciprocating movements into rotational movements; a main power shaft configured to make rotational movements by rotational movements of the first conversion unit and the second conversion unit; and a generation unit configured to produce electric power using transferred rotational movements of the main power shaft.
Abstract:
A yaw control-by-rudder type tidal stream power generation apparatus includes: a nacelle used in a tidal stream power generator that converts flowing energy of a tidal stream to generate electric power, and located in the tidal stream to be rotatable about a first rotating shaft; a rotor provided at one side of the nacelle with reference to the first rotating shaft, and configured to be rotated by the flowing energy of the tidal stream; a rudder unit provided at the other side of the nacelle with reference to the first rotating shaft, and including a rudder fixed to the nacelle and a variable rudder rotatably connected to the nacelle; and a control unit configured to control the rotation of the variable rudder. When the flow direction of the tidal stream is changed, the rotation of the variable rudder is controlled by the control unit.
Abstract:
Disclosed is a diffuser controller for tidal stream power generation, for use in a tidal stream power generator installed under water to generate electricity using a tidal stream. The diffuser controller includes: a turbine configured to be rotated by the tidal stream; a diffuser which is formed with an inlet through which a fluid flows into the diffuser and an outlet through which the fluid flows out from the diffuser, the turbine being fixed inside the diffuser and a rear foil being rotatably installed in the outlet; and a control unit configured to adjust an rotating angle of the rear foil depending on a direction or velocity of the tidal stream. The diffuser is configured to be rotatable.
Abstract:
Disclosed herein is a tidal current power generator having an underwater connecting structure, which is capable of ensuring the promptness, correctness and safety of an electrical coupling without support by a diver. The tidal current power generator includes: a nacelle in which a turbine rotor and a power generator are installed; and a tower which is coupled to or decoupled from the nacelle. A plug connector is included in the tower. The nacelle includes a hollow tube forming a passage in which the plug connector is inserted and being filled with a nonconductive filler, a socket connector coupled to the inside of the hollow tube and connected to the power generator, and a check valve which is installed in the passage of the hollow tube and prevents the filler from escaping from the hollow tube when the plug connector is not inserted in the hollow tube.
Abstract:
A multiple oscillating water pumping device includes: a wing member disposed in fluid to generate a lifting force using the flow energy of the fluid; a rotation device to reciprocally rotate the wing member to periodically change the direction of the lifting force acting on the wing member; an arm is rotatably coupled to the wing member, the arm being reciprocally rotated about a pivot shaft by the lifting force acting on the wing member; and a cylinder where fluid enters and exits according to the internal pressure that is periodically increased and decreased by the reciprocating motion of a piston that is connected with the arm through a connecting rod. The multiple oscillating water pumping device is configured to minimize the supply of a power source required for operation and to minimize the loss of head when pumped water flows toward a reservoir along a conduit.
Abstract:
This invention relates to amphiphilic hydrogel particles for antifouling paint, which are environmentally friendly and in which anti-corrosion and antifouling effects can be maximized through a single coating process. The amphiphilic hydrogel particles are fabricated by encapsulating conducting polymer particles having anti-corrosion functionality with functional nanoparticles having antifouling functionality and then immobilizing the functional nanoparticles on a hydrogel matrix, whereby the conducting polymer particles contained in the functional nanoparticles are slowly and continuously released or the release rate thereof can be controlled so as to release the corresponding particles in a specific environment, ultimately maintaining long-term functionality. The conducting polymer particles contained in the amphiphilic functional nanoparticles can exhibit anti-corrosion functionality, thus maximizing anti-corrosion and antifouling effects through a single coating process.
Abstract:
A multiple oscillating water pumping device includes: a wing member disposed in fluid to generate a lifting force using the flow energy of the fluid; a rotation device to reciprocally rotate the wing member to periodically change the direction of the lifting force acting on the wing member; an arm is rotatably coupled to the wing member, the arm being reciprocally rotated about a pivot shaft by the lifting force acting on the wing member; and a cylinder where fluid enters and exits according to the internal pressure that is periodically increased and decreased by the reciprocating motion of a piston that is connected with the arm through a connecting rod. The multiple oscillating water pumping device is configured to minimize the supply of a power source required for operation and to minimize the loss of head when pumped water flows toward a reservoir along a conduit.
Abstract:
This invention relates to amphiphilic hydrogel particles for antifouling paint, which are environmentally friendly and in which anti-corrosion and antifouling effects can be maximized through a single coating process. The amphiphilic hydrogel particles are fabricated by encapsulating conducting polymer particles having anti-corrosion functionality with functional nanoparticles having antifouling functionality and then immobilizing the functional nanoparticles on a hydrogel matrix, whereby the conducting polymer particles contained in the functional nanoparticles are slowly and continuously released or the release rate thereof can be controlled so as to release the corresponding particles in a specific environment, ultimately maintaining long-term functionality. The conducting polymer particles contained in the amphiphilic functional nanoparticles can exhibit anti-corrosion functionality, thus maximizing anti-corrosion and antifouling effects through a single coating process.