Abstract:
Provided is a nozzle clogging defect compensating method for compensating for a nozzle clogging defect appearing in a binder jetting stack manufacturing means. The nozzle clogging defect compensating method according to an embodiment of the present invention comprises the steps of: determining a defect occurrence region when a clogging defect of a nozzle used in the binder jetting stack manufacturing means occurs; determining whether compensation for the detect occurrence region is possible; when the compensation is possible, generating defect information and reflecting the defect information in an output code; setting a defect compensation region on the basis of the defect information; determining a defect compensation type of the defect compensation region; and reflecting a result of the determining in the output code. Accordingly, a replacement time and a replacement cost of an output head where the nozzle clogging defect has occurred can be saved, thereby reducing the unit production cost of a binder jetting type stack manufacturing output.
Abstract:
A method for producing a support structure of a 3D model for 3D printing is provided. A method for producing a support according to an embodiment of the present invention comprises the steps of: dividing a surface constituting a 3D model into multiple surface patches; classifying respective divided surface patches according to geometric characteristics; and producing supports corresponding to the classified characteristics with regard to respective surface patches. Accordingly, during metal laminate manufacturing, the output stability may be improved while reducing the support producing process time. In addition, the surfaces may be expressed by different colors according to the result of geometric characteristic classification, and the supports may also be expressed by different colors according to the type, thereby playing the role of guide lines such that the user can recognize the shape of the surfaces and the type of supports to be installed on the corresponding surfaces. Moreover, the size of a support tip is determined in view of the thickness of the area in which a support is to be produced, thereby preventing the problem of output quality degradation which would otherwise occur because the support cannot move upwards through an output part.
Abstract:
Provided is a method for monitoring 3D printing equipped with a 3D printing slicer and a recursive loop structure. A 3D printing method according to an embodiment of the present invention sets up a slicing environment for 3D printing of a 3D model, generates a mechanical code by performing slicing according to the setup environment, monitors the status of the 3D printing according to the generated mechanical code, and, depending on the monitoring result, determines whether or not to re-perform the setup and subsequent steps. Accordingly, by semi- or fully automating the 3D printing engineering process, the time and effort for engineering performance involving human participation are reduced, and the human resource is concentrated on a more important area, such that the effects of enhancing the 3D printing output quality and assuring the quality can be expected.
Abstract:
A support sink application method for 3D printing heat dissipation analysis is provided. The support sink application method according to an embodiment of the present invention comprises the steps in which: a support sink application system adds a support sink in order to simulate heat dissipation using a support in a state where a support shape is not generated in a 3D model; the support sink application system performs heat dissipation simulation with the support sink added to the 3D model; and the support sink application system adjusts the support sink on the basis of the result of the simulation. Therefore, the convenience of heat dissipation simulation can be improved by introducing the support sink capable of representing heat dissipation by the support with no support shape. In addition, due to dependency reduction caused by a support change, it is not necessary to reanalyze a target model (shape) even when a support is added/moved/deleted, and thus the convenience of heat dissipation simulation can be improved.
Abstract:
Provided are a method and a system for determining a model output direction on the basis of heat dissipation characteristic analysis for stabilizing output of metal 3D printing. A method for determining a model output direction on the basis of heat dissipation characteristic analysis according to an embodiment of the present invention comprises: a shape characteristic parameter deriving step in which a model output direction determining system calculates model shape characteristic data according to the output direction of a model that changes in a metal 3D printing output process; a heat data change amount collecting step in which the model output direction determining system collects simulation results regarding residual heat data of the model every time the output direction changes; a heat data change amount analyzing step in which the model output direction determining system analyzes heat dissipation characteristics inside the model on the basis of the collected simulation results, thereby calculating heat flatness after heat dissipation with regard to each output direction; and an output direction determining step in which the model output direction determining system recommends output directions in descending order of heat flatness remaining in the model on the basis of the result of calculating heat flatness after heat dissipation with regard to each output direction in the heat data change amount analyzing step. Accordingly, the amount of remaining heat that changes depending on the output direction is measured through simulation, thereby analyzing heat dissipation characteristics of the model, and output directions appropriate for output stabilization are derived and are proposed to process workers, thereby contributing to output stabilization of metal 3D printing.
Abstract:
Provided is a method for generating an auxiliary support for 3D printing output stability in bottom-up stacking manufacturing. The method for generating an auxiliary support, according to an embodiment of the present invention, comprises the steps of: slicing a 3D model into a plurality of 2D layers; calculating the position of an auxiliary support on the basis of the width of the sliced 2D layers; and generating an auxiliary support on the basis of the calculation result. Therefore, output stability can be increased by automatically generating the position and size of the auxiliary support so that the separation force of a stacked surface is uniform.
Abstract:
A method for separating audio sources and an audio system using the same are provided. The method introduces the concept of a residual signal to separate a mixed audio signal into audio sources, and separates an audio signal corresponding to at least two of the audio sources as a residual signal and processes the audio signal separately. Therefore, audio separation performance can be improved. In addition, the method re-separates a separated residual signal and adds the separated residual signals to corresponding audio sources. Therefore, audio sources can be separated more safely.
Abstract:
Provided is a method for regenerating a tool path on the basis of output data feedback in order to improve 3D printing output reliability. A tool path regeneration system according to an embodiment of the present invention comprises: a slicing unit for configuring a process parameter for 3D printing and performing slicing for 3D model data on the basis of the configured process parameter to generate a job file; and an output unit for performing 3D printing on the basis of the generated job file and collecting output data that is output while the 3D printing is performed, wherein the slicing unit comprises an output data analysis module for performing monitoring on the basis of the output data received from the output unit and determining whether to correct the process parameter on the basis of the result of the monitoring. Thus, when a user recognizes or predicts an output error and output failure in an output step, the user can regenerate an output error alarm or a tool path on the basis of output data feedback generated in the output step without returning to a slicing step to regenerate a job file, whereby output reliability can be improved and a production time and a production cost can be reduced.
Abstract:
Provided are a method and a system for solving a tolerance problem which may occur in a slicing quantization (staircase effect) process of 3D printing which slices a 3D model and laminates layers one by one. According to an embodiment of the present disclosure, a 3D model slicing method includes the steps of: receiving, by a 3D model slicing system, an input of data of a 3D model to 3D print; examining, by the 3D model slicing system, a dimension of a layer thickness of the inputted 3D model; correcting, by the 3D model slicing system, a size of a layer for slicing, based on a result of the examining; and slicing, by the 3D model slicing system, the corrected 3D model. Accordingly, by preserving a dimension within a layer thickness, a problem that a concavo-convex portion is lost in a slicing quantization process of 3D printing according to a slicing position within a layer thickness, and a tolerance occurs is solved.
Abstract:
The present invention relates to a method for selecting an appropriate mode when performing a new broadcast, such as a 3D stereo broadcast, a UHDTV broadcast, and a multi-view broadcast, among others, while maintaining compatibility with existing broadcasting channels in an MPEG-2-TS format for transmitting and receiving digital TV, and to a method for recognizing a descriptor. To this end, the present invention suggests providing the descriptor which is related to synthesizing left and right images using the type of stream, existence of the descriptor, and a frame-compatible mode flag.