摘要:
Routers balance network traffic among multiple paths through a network according to an amount of bandwidth that can be sent on an outgoing interface computed for each of the paths. For example, a router receives a link bandwidth for network links that are positioned between the first router and a second router of the network, and selects a plurality of forwarding paths from the first router to the second router. Upon determining that one of the network links is shared by multiple of the plurality of forwarding paths, the router computes a path bandwidth for each of the plurality of outgoing interfaces so as to account for splitting of link bandwidth of the shared network link across the multiple forwarding paths that share the network link. The router assigns packet flows to the forwarding paths based at least on the computed amount of bandwidth for each of the outgoing interfaces.
摘要:
A transport LAN segment service is provided over a transport network. Responsibilities for configuring, provisioning and forwarding over a transport LAN segment are divided between layer 2 and 3 service provider edge devices, where the layer 3 edge device handles discovery and tunneling responsibilities, the layer 2 edge device handles learning and flooding responsibilities, and information can be exchanged between the layer 2 and 3 edge devices. Configuration is simplified by advertising TLS-label information, layer 2 address learning, and flooding when the needed configuration information has not yet been learned or discovered.
摘要:
A network device receives a packet with a multicast nexthop identifier, and creates a mask that includes addresses of egress packet forwarding engines, of the network device, to which to provide the packet. The network device divides the mask into two portions, generates two copies of the packet, provides a first portion of the mask in a first copy of the packet, and provides a second portion of the mask in a second copy of the packet. The network device also forwards the first copy of the packet to an address of a first egress packet forwarding engine provided in the first portion of the mask, and forwards the second copy of the packet to an address of a second egress packet forwarding engine provided in the second portion of the mask.
摘要:
Techniques are describe for establishing an overall label switched path (LSP) for load balancing network traffic being sent across a network using the a resource reservation protocol such as Resource Reservation Protocol with Traffic Engineering (RSVP-TE). The techniques include extensions to the RSVP-TE protocol that enable a router to send Path messages for establishing a tunnel that includes a plurality of sub-paths for the overall LSP. The tunnel may comprise a single RSVP-TE Label Switched Path (LSP) that is configured to load balance network traffic across different sub-paths of the RSVP-TE LSP over the network.
摘要:
A route for a data unit through a network may be defined based on a number of next hops. Exemplary embodiments described herein may implement a router forwarding table as a chained list of references to next hops. In one implementation, a device includes a forwarding table that includes: a first table configured to store, for each of a plurality of routes for data units in a network, a chain of links to next hops for the routes; and a second table configured to store the next hops. The device also includes a forwarding engine configured to assemble the next hops for the data units based on using the chain of links in the first table to retrieve the next hops in the second table and to forward the data units in the network based on the assembled next hops.
摘要:
When a node has to restart its control component, or a (e.g., label-switched path signaling) part of its control component, if that node can preserve its forwarding information across the restart, the effects of such restarts on label switched path(s) the include the restarting node are minimized. A node's ability to preserve forwarding information across a control component (part) restart is advertised. In the event of a restart, stale forwarding information can be used for an limited time before. The restarting node can use its forwarding information, as well as received label-path advertisements, to determine which of its labels should be associated with the path, for advertisement to its peers.
摘要:
Techniques are described for verifying a status of a set of paths through a computer network for two or more connectivity protocols. For example, a node uses a first connectivity protocol to concurrently learn information that will cause packets conforming to the first connectivity protocol and packet conforming to a second connectivity protocol to traverse a set of paths through a computer network. After learning this information, the node may verify a status of each of the paths using the first connectivity protocol. In addition, the node may verify a status of each of the paths using the second connectivity protocol. By verifying the status of the paths using both the first and the second connectivity protocols, the node may be able to quickly and accurately determine whether a path has failed.
摘要:
The liveness of routing protocols can be determined using a mechanism to aggregate liveness information for the protocols. The ability of an interface to send and receive packets and the forwarding capability of an interface can also be determined using this mechanism. Since liveness information for multiple protocols, the liveness of interfaces, the forwarding capability of interfaces, or both, may be aggregated in a message, the message can be sent more often than could individual messages for each of the multiple protocols. This allows fast detection of failures, and sending connectivity messages for the individual protocols, such as neighbor “hellos,” to be sent less often.
摘要:
Techniques are described for automatically establishing network tunnels among a set of routers. For example, the techniques allow a routing protocol, such as the Border Gateway Protocol (BGP), to be extended to generate routing advertisements that direct a receiving device to automatically establish a particular type of tunnel, e.g., a Resource Reservation Protocol with Traffic Engineering extensions (RSVP-TE) Label Switched Path (LSP), and automatically direct particular network traffic onto the tunnel. A method comprises receiving a routing advertisement from a network device, wherein the routing advertisement includes a destination reachable by the network device, and a tunnel attribute that specifies a type of network tunnel to be established to the network device for forwarding traffic to the destination, automatically establishing a network tunnel to the network device in accordance with the tunnel attribute, and forwarding network traffic to the destination using the established network tunnel.
摘要:
Detecting if a label-switched path (LSP) is functioning properly. To test that packets that belong to a particular Forwarding Equivalence Class (FEC) actually end their MPLS LSP on an label switching router (LSR) that is an egress for that FEC, a request message carrying information about the FEC whose LSP is being verified may be used. The request message may be forwarded like any other packet belonging to that FEC. A basic connectivity test as well as a fault isolation test are supported. In a basic connectivity test mode, the packet should reach the end of the LSP, at which point it is sent to the control plane of the egress LSR. The LSR then verifies that it is indeed an egress for the FEC. In a fault isolation test mode, the packet is sent to the control plane of each transit LSR, which performs various checks that it is indeed a transit LSR for the LSP. The transit LSR may also return further information that helps check the control plane against the data plane, i.e., that forwarding matches what the routing protocols determined as the path. A reliable return path is used for the reply.