METHOD OF PRODUCING BIODEGRADABLE MAGNESIUM COMPOSITE BY SPARK PLASMA SINTERING

    公开(公告)号:US20210130930A1

    公开(公告)日:2021-05-06

    申请号:US16672866

    申请日:2019-11-04

    Abstract: A method for producing a biodegradable magnesium metal composite that includes a polycrystalline magnesium matrix and TiB2 grains which are homogenously distributed in the polycrystalline magnesium matrix involving spark plasma sintering a milled mixture of magnesium powder and TiB2 powder. The temperature, pressure, and time of the spark plasma sintering used in the method are used to give high microharness, macrohardness, and density with low porosity by limiting the grain growth in the composite. The method yields a biodegradable magnesium metal composite having an improved microhardness, macrohardness, density, and porosity compared to other composites and methods of making composites.

    TITANIUM ALLOYS FOR BIOMEDICAL APPLICATIONS AND FABRICATION METHODS THEREOF
    7.
    发明申请
    TITANIUM ALLOYS FOR BIOMEDICAL APPLICATIONS AND FABRICATION METHODS THEREOF 有权
    用于生物医学应用的钛合金及其制造方法

    公开(公告)号:US20170067136A1

    公开(公告)日:2017-03-09

    申请号:US14845430

    申请日:2015-09-04

    Abstract: Alloys of titanium with 20-22 at. % niobium and 12-13 at. % zirconium. The alloys are prepared by mechanical alloying of elemental powders and densification by spark plasma sintering. The alloys have a nano-scaled, equiaxed granular structure, a microhardness of at least 650 HV and a modulus of 90-140 GPa. The inventive alloy is corrosion resistant, biocompatible, and is of a higher wear resistance and durability compared to the Ti-6Al-4V alloy. The bioactive surface of the inventive nanostructured alloy promotes a higher protein adsorption that stimulates new bone formation than other titanium-based alloys. These alloys are suitable for various biomedical and dental applications.

    Abstract translation: 钛合金与20-22 at。 %铌和12-13 at。 %锆。 合金通过元素粉末的机械合金化和通过放电等离子体烧结的致密化来制备。 合金具有纳米级的等轴晶粒结构,至少650HV的显微硬度和90-140GPa的模量。 与Ti-6Al-4V合金相比,本发明的合金具有耐腐蚀性,生物相容性,并且具有更高的耐磨性和耐久性。 本发明的纳米结构合金的生物活性表面促进了比其它钛基合金更高的蛋白质吸附,其刺激新的骨形成。 这些合金适用于各种生物医学和牙科应用。

Patent Agency Ranking