摘要:
An implantable cardiac stimulation device and method automatically verify capture of one or both ventricular chambers by sensing a far-field signal in both atrial chambers. A far-field interval window is set following the delivery of the ventricular stimulation, during which a far-field signal is detected and compared to a signal representing a predetermined far-field R-wave that represents successful capture of one or both ventricular chambers. If the far-field signal is approximately equal to the predetermined far-field R-wave signal, then capture is verified. If capture is not verified, a threshold search is performed in the ventricle in which capture was lost.
摘要:
An implantable cardiac stimulation device includes a system that monitors progression or regression of a patient's heart condition. The system includes a plurality of electrode configurations for sensing cardiac activity of the heart. A sensing circuit provides an electrical signal representing electrical activity of the heart from each of the sensing electrode configurations. A processor coupled to the sensing circuit determines, at spaced apart times, and over time, a ventricular repolarization interval in each of the electrical signals and a corresponding ventricular repolarization interval dispersion. A memory stores the ventricular repolarization interval dispersions for transmission by a telemetry circuit to an external receiver for analysis.
摘要:
Techniques for providing capture verification during overdrive pacing are described. If an overdrive pacing pulse fails to evoke capture (i.e. a loss of capture occurs), a high voltage backup pulse is automatically delivered. Once a second loss of capture occurs during a single sequence of overdrive pacing pulses, an overdrive pulse capture threshold detection search, described herein, is performed while overdrive pacing continues. Various techniques for providing rate recovery are also described herein. The rate recovery techniques are designed to avoid problems that might arise from possible fusion of intrinsic beats and overdrive pacing pulses that fail to evoke capture. In a first rate recovery technique, capture detection is suspended during rate recovery due to the possibility of fusion. Instead, an extra safety margin is added to the overdrive pulses. Once two intrinsic beats are detected, automatic capture verification is reactivated for the next two beats to verify capture before the new overdrive rate is finally established. In a second rate recovery technique, capture verification is maintained throughout rate recovery but the pulse magnitude is increased to a high output mode voltage to avoid any risks of fusion. After the output is increased to the high output mode voltage, a subsequent loss of capture is considered to be an intrinsic event for the purposes of terminating rate recovery. In a third rate recovery technique, capture verification is maintained during rate recovery and the output energy is not increased to the high output mode voltage unless loss of capture is first detected. Subsequent loss of capture events are then counted as P-waves.
摘要:
An implantable cardiac stimulation device and associated method perform an automatic calibration procedure for evaluating whether automatic capture verification can be recommended. The calibration procedure calculates and displays a number of variables for use by a medical practitioner in programming automatic capture operating parameters. An average paced depolarization integral (PDI) is determined from the cardiac signals following delivery of multiple stimulation pulse below and above capture threshold such that both pure lead polarization signals and evoked response signals may be analyzed. From the paced depolarization integral data, a capture threshold, a stimulation response curve, a minimum evoked response, a maximum lead polarization, an evoked response sensitivity, an evoked response safety margin, and a polarization safety margin are determined. Based on these variables, the calibration procedure determines if automatic capture verification can be recommended. If so, the stimulation device calculates a capture detection threshold. The automatic capture verification recommendation and the estimated calibration variables are displayed.
摘要:
A system and associated method for acquiring, storing, and displaying evoked response signal features for the purposes of monitoring evoked response variability and evaluating the performance of automatic capture. The system further acquires, stores, and displays the number of suspected fusion events for the purpose of improving fusion avoidance through either automatic modification to fusion avoidance mechanisms or by providing a clinician with diagnostic information helpful in selecting programmable operating parameters.
摘要:
A pulse is delivered to the atrium using an electrode configuration that includes at least a pulse cathode electrode. Cardiac activity in the atrium is sensed using a unipolar electrode configuration to provide a sensed signal wherein the unipolar electrode configuration does not include the pulse cathode electrode. A determination as to whether the pulse caused an atrial evoked response is made based on a maximum derivative value of the sensed signal with respect to time, a comparison of the sensed signal to a parameter or an integral of the sensed signal with respect to time.
摘要:
A method for sensing cardiac activity in an atrium of a patient's heart includes delivering a pulse to the atrium using an electrode configuration that includes at least a cathode electrode; sensing cardiac activity in the atrium using a unipolar electrode configuration to provide a sensed signal wherein the unipolar electrode configuration does not include the cathode electrode; determining the duration during which the voltage of the sensed signal falls below a threshold voltage; and comparing the determined duration to a parameter to determine whether the pulse caused an atrial evoked response.
摘要:
Modern implantable cardiac stimulation devices include processing and data storage capabilities that may be exploited to track myocardial condition and autonomic tone. Implantable devices have a capability to measure and store electrogram information over a period of time in a relatively large capacity memory, with advances in technology allowing increases in memory size. The evoked response varies in amplitude and morphology with changes in autonomic tone, ventricular filling, paced rate, and other parameters. The implantable cardiac device can be configured to sense and accurately quantify the evoked response, derive parameters from the quantified evoked response, store the parameters over long time periods, and derive variability statistics from the parameters to assist in tracking the patient's condition over time, and guiding the patient's therapy.
摘要:
A method for implanting a neurostimulation lead within a patient includes measuring impedances of electrodes on the lead in order to correctly position the lead relative to a target tissue region. The electrodes are circumferentially segmented electrodes that are spaced from each other about the longitudinal axis of the lead. When the difference between the impedances of the electrodes exceeds a threshold value, the lead is in the correct position. In accordance with another embodiment, impedance measurements are used to select which one of the electrodes is closest to the target tissue region. By determining which electrode has the highest impedance and which electrode has the lowest impedance, the type of tissue adjacent to each electrode can be determined based on the conductivity properties of the tissue. The target tissue region may be a spinal cord, a posterior longitudinal ligament, white matter, or gray matter.
摘要:
A neurostimulation paddle lead, method of neurostimulation, and neurostimulation system are provided. The neurostimulation paddle lead carries a plurality of electrodes comprising at least four columns of electrodes having a spacing between two inner electrode columns less than a spacing between the inner electrode columns and adjacent outer electrode columns. The inner electrode columns may also be longitudinally offset from the outer electrode columns. The methods and neurostimulation systems steer current between the electrodes to modify a medial-lateral electrical field created adjacent spinal cord tissue.