Abstract:
A simple graphic engine in which a document reading array and an array of marking elements are supported on the same support member. The support member is scanned in a direction orthogonal to the direction of relative movement between the support member and the document to be read and/or the record-receiving member. The support member is oscillated axially during scanning to reduce the number of elements required in both the scanning and marking elements.
Abstract:
In the representative embodiments of an ink jet array described in the specification, a plurality of ink sources is arranged to provide different inks to selected orifices and a linear array of ink jet orifices is supplied with ink from pressure chambers alternately disposed on opposite sides of the array to permit close spacing of the ink jet orifice and adjacent pairs of orifices in the array receive ink from the same ink source. At the end opposite from the ink jet orifice, each pressure chamber having a compliant wall communicates with a low acoustic impedance chamber to reflect negative pressure pulses from the pressure chamber back through the chamber as positive pulses to reinforce positive pulses applied to the pressure chamber and to prevent pressure pulses from being transmitted to the ink supply.
Abstract:
A check valve for a drop-on-demand pressure pulse ejector for preventing pressure pulse loss to the liquid supply system. The check valve is made by electrodeposition onto the surface of a substrate.
Abstract:
The invention relates to an oscillating bar drop-on demand ink jet printer where printing occurs while the bar is moving bidirectionally over a transversely moving record-receiving surface. Specifically, the invention relates to a method of increasing the effective print speed of such a printer by electrostatically compensating for the inherent velocity variation of the oscillating bar as it oscillates.
Abstract:
A pulsed liquid droplet ejecting apparatus wherein a rectangular piezoelectric transducer is arranged abaxially over an ink containing channel with an edge in operating relationship with the channel. The edge of the transducer is held fixed so that on excitation of the transducer by an electrical pulse, the transducer extends towards the channel ejecting a drop. The piezoelectric transducer is coated with a material, which provides shear relief between the piezoelectric transducer and the ejector embedding material.
Abstract:
In the shear mode piezoelectric transducer for an ink jet system described in the specification, a piezoelectric plate is polarized parallel to the plane of the plate and in directions extending away from the center of the pressure chamber with which the transducer is used, and electrodes mounted on opposite surfaces of the plate impose electric fields orthogonal to the direction of polarization. The resulting shear motion of the transducer decreases the volume of the pressure chamber, ejecting a drop of ink from an orifice communicating with the pressure chamber. The piezeelectric plate used in the transducer is prepared by imposing electric fields within the plate in the direction parallel to the plane of the plate between electrodes mounted on opposite sides of the plate in the central region of the pressure chamber and electrodes mounted on opposite sides of the plate in the peripheral regions of the pressure chamber.
Abstract:
Electrostatic deflection is used in an oscillating bar drop-on-demand ink jet printer to compensate for about one half of the droplet displacement caused by bar velocity. The disclosed system provides a method for printing that is not sensitive to variations in ink droplet ejection velocity.
Abstract:
A method and apparatus for marking wherein an array of marking elements is used to mark on a continuously moving mark-receiving surface. In order to provide a rectangular grid in an efficient manner, the array is oscillated both perpendicular and parallel to the direction of movement of the mark-receiving surface.
Abstract:
A coincidence ink jet principle is disclosed wherein each ink jet has two inlet passages communicated to an outlet orifice. Each inlet passage is communicated to a respective transducer chamber. The fluid displacement and fluid velocity effected by a pressure pulse generated by each transducer chamber in a respective inlet passage is insufficient to express a droplet from the orifice. However, the combined fluid displacement and fluid velocity, which is the result of the pressure pulses generated by the transducers being coincident at the orifice, will result in a droplet being expressed from the orifice.In one system disclosed utilizing the above described principle, each inlet passage of a jet is communicated to a respective transducer and each transducer is connected to a respective electronic driver. In this system, the number of electronic drivers and transducer chambers are substantially less than the number of ink jets. These transducer chambers are time shared for expressing an ink droplet. Actuation of the two transducer chambers communicated to a particular jet, in such a manner that the pressure pulses generated by the respective transducers coincide at the orifice, will effect expression of a droplet therefrom.In another system disclosed utilizing the above described principle, a master transducer chamber is communicated to a separate respective droplet expression transducer chamber and each droplet expression transducer chamber is connected to a respective electronic driver. In this system, the master transducer chamber is actuated to create at each orifice a pressure pulse which is below the threshold pressure pulse for expressing an ink droplet therefrom. Actuation of any of the droplet expression transducer chambers to generate a pressure pulse which coincides at a particular orifice with the pressure pulse generated by the master transducer, will bring the resultant pressure pulse at the orifice above threshold to effect expression of the droplet from a particular orifice.