Abstract:
A method of suppressing distortion of a working laser beam directed for incidence on a target specimen presented for processing by a laser link processing system uses a spatial filter to remove stray light-induced distortion from the working laser beam.
Abstract:
A method selectively processes structures on a workpiece with laser pulses. The structures are arranged in a linear pattern having approximately equal pitch. The pulses propagate along a laser beam propagation path terminating at a laser beam spot on the workpiece. The method fires a first processing pulse when the spot coincides with a first structure location, selectively blocks or clears the propagation path during the first pulse, moves the workpiece and the spot relative to one another such that the spot moves toward a second structure location at a speed less than the product of the laser's PRF and the pitch, fires a dummy pulse before the spot reaches the second structure location, blocks the propagation path during the dummy laser pulse, fires another processing pulse when the beam spot coincides with the second structure location, and selectively blocks or clears the propagation path during the second processing pulse.
Abstract:
A laser processes a workpiece with laser pulses delivered at random time intervals and at substantially constant energy levels by characterizing the laser cavity discharge behavior and utilizing that information for adjusting dummy pulse time periods to compensate for the energy errors. Dummy pulses are laser pulses that are blocked from reaching a workpiece. A second way for providing constant pulse energies employs an AOM for varying amounts of laser energy passed to the workpiece. A third way of providing constant pulse energies entails extending the pulse period of selected pulses to allow additional laser cavity charging time whenever a dummy pulse is initiated.
Abstract:
A laser processes a workpiece with laser pulses delivered at random time intervals and at substantially constant energy levels by characterizing the laser cavity discharge behavior and utilizing that information for adjusting dummy pulse time periods to compensate for the energy errors. Dummy pulses are laser pulses that are blocked from reaching a workpiece. A second way for providing constant pulse energies employs an AOM for varying amounts of laser energy passed to the workpiece. A third way of providing constant pulse energies entails extending the pulse period of selected pulses to allow additional laser cavity charging time whenever a dummy pulse is initiated.
Abstract:
A laser-based workpiece processing system includes sensors connected to a sensor controller that converts sensor signals into focused spot motion commands for actuating a beam steering device, such as a two-axis steering mirror. The sensors may include a beam position sensor for correcting errors detected in the optical path, such as thermally-induced beam wandering in response to laser or acousto-optic modulator pointing stability, or optical mount dynamics.
Abstract:
A method of suppressing distortion of a working laser beam directed for incidence on a target specimen presented for processing by a laser link processing system uses a spatial filter to remove stray light-induced distortion from the working laser beam.
Abstract:
A fence with an integrated guard includes a fence having a bottom end and a guard attached to the lower end of the fence. The guard can wrap around the bottom end of the fence. Alternatively, the guard can extend downwardly from the fence. Still alternatively, the guard can extend between adjacent horizontal members of the fence.
Abstract:
A laser-based workpiece processing system includes sensors connected to a sensor controller that converts sensor signals into focused spot motion commands for actuating a beam steering device, such as a two-axis steering mirror. The sensors may include a beam position sensor for correcting errors detected in the optical path, such as thermally-induced beam wandering in response to laser or acousto-optic modulator pointing stability, or optical mount dynamics.
Abstract:
A laser-based workpiece processing system includes sensors connected to a sensor controller that converts sensor signals into focused spot motion commands for actuating a beam steering device, such as a two-axis steering mirror. The sensors may include a beam position sensor for correcting errors detected in the optical path, such as thermally-induced beam wandering in response to laser or acousto-optic modulator pointing stability, or optical mount dynamics.
Abstract:
A laser processes a workpiece with laser pulses delivered at random time intervals and at substantially constant energy levels by characterizing the laser cavity discharge behavior and utilizing that information for adjusting dummy pulse time periods to compensate for the energy errors. Dummy pulses are laser pulses that are blocked from reaching a workpiece. A second way for providing constant pulse energies employs an AOM for varying amounts of laser energy passed to the workpiece. A third way of providing constant pulse energies entails extending the pulse period of selected pulses to allow additional laser cavity charging time whenever a dummy pulse is initiated.