摘要:
An optical network unit according to the present invention is provided as comprising a configuration that component units built therein are grouped for at least two sheets of substrate modules and arranged thereat. There are provided individual embodiments: (a) arranging an L2 layer and a part of the component unit of an L1 layer at a first substrate module, meanwhile, arranging the left part of the component unit of the L1 layer at a second substrate module; (b) arranging the component units of the L1 layer and of the L2 layer at the first substrate module and the second substrate module individually by grouping therefor; and (c) arranging the component units of the L2 layer and of the L1 layer at the first substrate module and the second substrate module respectively.
摘要:
A customer premises optical network unit (ONU) comprises: an electrical/optical transform unit 6 to be connected with an optical transmission path 2 at a central office side for performing an opto-electrical transform and an inverse opto-electrical transform; an ONU function part 7 to be connected with an electric signal input and output terminal of the electrical/optical transform unit 6; a serial/parallel transform unit 8 to be connected with a parallel signal terminal of the ONU function part 7 for performing a serial/parallel transform and an inverse serial/parallel transform; and a multi source agreement interface module 9 to be connected with a serial signal terminal of the serial/parallel transform unit 8.
摘要:
An optical network unit according to the present invention is provided as comprising a configuration that component units built therein are grouped for at least two sheets of substrate modules and arranged thereat. There are provided individual embodiments: (a) arranging an L2 layer and a part of the component unit of an L1 layer at a first substrate module, meanwhile, arranging the left part of the component unit of the L1 layer at a second substrate module; (b) arranging the component units of the L1 layer and of the L2 layer at the first substrate module and the second substrate module individually by grouping therefor; and (c) arranging the component units of the L2 layer and of the L1 layer at the first substrate module and the second substrate module respectively.
摘要:
An optical network unit according to the present invention is provided as comprising a configuration that component units built therein are grouped for at least two sheets of substrate modules and arranged thereat. There are provided individual embodiments: (a) arranging an L2 layer and a part of the component unit of an L1 layer at a first substrate module, meanwhile, arranging the left part of the component unit of the L1 layer at a second substrate module; (b) arranging the component units of the L1 layer and of the L2 layer at the first substrate module and the second substrate module individually by grouping therefor; and (c) arranging the component units of the L2 layer and of the L1 layer at the first substrate module and the second substrate module respectively.
摘要:
A subscriber premises side optical network unit, and an optical transmission system having the same, is provided that monitors whether or not a communication condition is established with a center side optical line termination and halts signals to be outputted to external nodes when the communication condition is not established. In an optical network unit (ONU), a signal output control means monitors whether or not the communication condition with an OLT is established and when it determines that the communication condition is not established, outputs an output halting request to loopback setting sections to control to assume a loopback state. Thereby, it becomes possible to halt the output of the signals from an interface module to a switch.
摘要:
To provide a method for detecting a charged state of a battery, for evaluating a deterioration thereof due to each of reaction processes that individually have rates of reactions as different from therebetween, and for performing a detection of the charged state of the battery, a method for detecting the charged state of the battery according to the present invention comprises the steps of: measuring a voltage Vmes of the battery, an electric current Imes thereof and a temperature Tmes thereof, and then inputting such the measured values, as a step S1; judging whether or not an absolute value of the measured electric current as the Imes is smaller than a threshold value of the electric current as an Ithre, as a step S2; estimating an OCV20 hr by making use of an SOCn-1 and an SOHn-1, that are the values after charging and/or discharging at the last time, with reference to a stable OCV estimated formula, as a step S4; calculating a difference between the measured value of the voltage as the Vmes and the OCV20 hr, and then saving such the calculated value, as a step S5; renewing a relaxation function as an Fn(t) with corresponding to an amount of time as t, as processes from a step S6 through a step S19; calculating an SOHn at the step S17 with making use of the Fn(t) to be renewed; and calculating an SOCn at the step S19 with making use thereof.
摘要:
A communication system that performs communication route control includes a center node and at least one node connected thereto via a communication line. The node includes an error-detecting unit that detects an error in the communication route, a route request packet transmitting unit that broadcasts a new route request packet in response to the detection, a route answer packet receiving unit that receives a route answer packet transmitted from a node that is a target node or a node having a valid route to the target node or from the center node, and a communication route updating unit that updates a communication route based on the route answer packet. A node that is the target node or the node having a valid route to the target node or the center node transmits a route answer packet to the node in response to a route request packet transmitted from the node.
摘要:
A communication system that performs communication route control includes a center node and at least one node connected thereto via a communication line. The node includes an error-detecting unit that detects an error in the communication route, a route request packet transmitting unit that broadcasts a new route request packet in response to the detection, a route answer packet receiving unit that receives a route answer packet transmitted from a node that is a target node or a node having a valid route to the target node or from the center node, and a communication route updating unit that updates a communication route based on the route answer packet. A node that is the target node or the node having a valid route to the target node or the center node transmits a route answer packet to the node in response to a route request packet transmitted from the node.